Stimulation of β1-adrenergic receptor (β1AR), a GPCR, and the receptor for advanced glycation end-products (RAGE), a pattern recognition receptor (PRR), have been independently implicated in the pathogenesis of cardiomyopathy caused by various etiologies, including myocardial infarction, ischemia/reperfusion injury, and metabolic stress. Here, we show that the two distinctly different receptors, β1AR and RAGE, are mutually dependent in mediating myocardial injury and the sequelae of cardiomyopathy. Deficiency or inhibition of RAGE blocks β1AR- and RAGE-mediated myocardial cell death and maladaptive remodeling. Ablation or blockade of β1AR fully abolishes RAGE-induced detrimental effects. Mechanistically, RAGE and β1AR form a complex, which in turn activates Ca/calmodulin-dependent kinase II (CaMKII), resulting in loss of cardiomyocytes and myocardial remodeling. These results indicate that RAGE and β1AR not only physically crosstalk at the receptor level, but also functionally converge at the common mediator, CaMKII, highlighting a combined inhibition of RAGE and β1AR as a more effective therapy to treat diverse cardiovascular diseases, such as myocardial infarction, ischemia/reperfusion injury, and diabetic cardiovascular complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782154PMC
http://dx.doi.org/10.1172/jci.insight.84969DOI Listing

Publication Analysis

Top Keywords

rage β1ar
12
myocardial infarction
8
infarction ischemia/reperfusion
8
ischemia/reperfusion injury
8
inhibition rage
8
rage
7
β1ar
6
myocardial
5
interaction β1-adrenoceptor
4
β1-adrenoceptor rage
4

Similar Publications

Background: Intracerebral hemorrhage (ICH) is a severe condition associated with high mortality and disability rates. Oxidative stress plays a critical role in the development of secondary brain injury (SBI) following ICH. Previous research has demonstrated that Annao Pingchong decoction (ANPCD) treatment for ICH has antioxidant effects, but the exact mechanism is not yet fully understood.

View Article and Find Full Text PDF

Potential molecular targets and pathways of a traditional Chinese medicine formula for bovine endometritis identified by network pharmacology.

Pol J Vet Sci

September 2024

Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.

Bovine endometritis has become a persistent issue in the global dairy business, resulting in huge economic losses. Due to their numerous positive benefits, Chinese herbal medicines (CHMs) have recently demonstrated remarkable pharmacological potential against endometritis. The objective of this study was to investigate the effects and elucidate the underlying mechanisms of the Yimucao formula (YMF) that involves five herbs in lactation cows under endometritis conditions.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

Temporal RAGE Over-Expression Disrupts Lung Development by Modulating Apoptotic Signaling.

Curr Issues Mol Biol

December 2024

Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA.

Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!