Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

FASEB J

Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia; and Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia

Published: June 2016

Activation of inflammatory signaling pathways links obesity with metabolic disorders. TLR4-mediated activation of MAPKs and NF-κB are 2 such pathways implicated in obesity-induced inflammation. Apolipoprotein A-I (apoA-I) exerts anti-inflammatory effects on adipocytes by effluxing cholesterol from the cells via the ATP binding cassette transporter A1 (ABCA1). It is not known if these effects involve inhibition of inflammatory signaling pathways by apoA-I. This study asks if apoA-I inhibits activation of MAPKs and NF-κB in mouse 3T3-L1 adipocytes and whether this inhibition is ABCA1 dependent. Incubation of differentiated 3T3-L1 adipocytes with apoA-I decreased cell surface expression of TLR4 by 16 ± 2% and synthesis of the TLR4 adaptor protein, myeloid differentiation primary response 88, by 24 ± 4% in an ABCA1-dependent manner. ApoA-I also inhibited downstream activation of MAPKs, such as ERK, p38MAPK, and JNK, as well as expression of proinflammatory adipokines in bacterial LPS-stimulated 3T3-L1 adipocytes in an ABCA1-dependent manner. ApoA-I, by contrast, suppressed nuclear localization of the p65 subunit of NF-κB by 30 ± 3% in LPS-stimulated 3T3-L1 adipocytes in an ABCA1-independent manner. In conclusion, apoA-I inhibits TLR4-mediated inflammatory signaling pathways in adipocytes by preventing MAPK and NF-κB activation.-Sultana, A., Cochran, B. J., Tabet, F., Patel, M., Cuesta Torres, L., Barter, P. J., Rye, K.-A. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201500026RDOI Listing

Publication Analysis

Top Keywords

3t3-l1 adipocytes
24
inflammatory signaling
20
signaling pathways
20
inhibition inflammatory
12
apolipoprotein a-i
12
activation mapks
12
pathways 3t3-l1
8
adipocytes
8
adipocytes apolipoprotein
8
mapks nf-κb
8

Similar Publications

fruit extract preadipocyte differentiation inhibition in 3T3-L1 cells.

J Taibah Univ Med Sci

December 2024

Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.

Objective: Concerns over the increasing number of obese individuals and the associated health risks have prompted therapeutic option explorations. Similarly, this study aimed to establish fruit extract (SCFE) anti-adipogenic attributes in 3T3-L1 cells.

Methods: The polyphenolic compounds in SCFE were identified with Reverse phase-high performance liquid chromatography (RP-HPLC).

View Article and Find Full Text PDF

Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.

Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.

View Article and Find Full Text PDF

Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice.

View Article and Find Full Text PDF

Objectives: MicroRNAs (miRNAs) play a crucial role in the onset and progress of obesity. The inflammation of adipose tissue is deemed causative of the complications associated with obesity. This study delved into the potential mechanisms of miRNA-mediated SIRT1 regulation and inflammatory factors modulation in 3T3-L1 cells.

View Article and Find Full Text PDF

4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice.

Phytomedicine

December 2024

Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea. Electronic address:

Background: Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics.

Purpose: In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!