Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast cancer is currently the most common form of cancer affecting women. Recent studies have reported that triterpenoid saponins isolated from Androsace umbellata exhibit anti-proliferative effects in several types of cancer cells. However, the cytotoxic effect of saxifragifolin C (Saxi C) on breast cancer cells remains unclear. The purpose of this study is to evaluate the in vitro anti-tumor activity of Saxi C in human breast cancer cells. Our data indicated that MDA-MB-231 cells were more sensitive than MCF-7 cells to Saxi C treatment. In addition, Saxi C inhibited cell survival through the induction of reactive oxygen species and the caspase-dependent pathway in the MDA-MB-231 cells, whereas MCF-7 cells treated with Saxi C underwent the apoptotic cell death in a caspase-independent manner. Although Saxi C treatment resulted in the induction of activation of MAPKs in both types of human breast cancer cells, p38 MAPK and JNK, but not ERK1/2, appeared to be involved in Saxi C-induced apoptosis. Moreover, ERα-overexpressing MDA-MB-231 cells remained alive, whereas the survival of shERα-transfected MCF-7 cells decreased. Taken together, Saxi C induced apoptosis in MCF-7 cells and MDA-MB-231 cells via different regulatory mechanisms, and ERα status might be essential for regulating Saxi C-induced apoptosis in breast cancer cells. Thus, Saxi C is a potential chemotherapeutic agent in breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12272-016-0729-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!