Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

Ultrason Sonochem

College of Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024, China. Electronic address:

Published: July 2016

In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2016.01.004DOI Listing

Publication Analysis

Top Keywords

6061 aluminum
12
aluminum alloys
12
ultrasonic semi-solid
8
semi-solid coating
8
coating soldering
8
soldering 6061
4
alloys
4
alloys sn-pb-zn
4
sn-pb-zn alloys
4
alloys paper
4

Similar Publications

This paper presents the results of a pilot application of Powder-Bed Fusion of Metals Using a Laser (PBF-LB/M) for the fabrication of M300 (1.2709) maraging steel sheet metal bending tools. S235 steel was used as a substrate for the fabrication of bending punches.

View Article and Find Full Text PDF

This study aims to optimize the Wire Electrical Discharge Machining (EDM) process parameters for aluminum 6061 alloy reinforced with Mg and MoS using the Box-Behnken (BBD) design and the non-dominated sorting genetic (NSGA-II) algorithm. The objective is to enhance the machining efficiency and quality of the composite material. The Box-Behnken (BBD) design was utilized to design a set of experiments with varying levels of process parameters, comprising pulse-on time, servo volt, and current.

View Article and Find Full Text PDF

The fracture position of a friction plug welding (FPW) joint is typically located at or near the thermo-mechanically affected zone (TMAZ). Here, we found that microcracks in all FPW specimens initiate at the deformed plug center (DPC) zone and then propagate through the plug center along 45° shear surfaces, because the lowest hardness occurs at the DPC zone rather than the TMAZ or other zones, and the DPC zone presents a tilt fiber-like microstructure. Such a tilt microstructure stimulates formations and deformations of microvoids and propagation of microcracks along 45° shear surfaces.

View Article and Find Full Text PDF

Aluminium alloys are characterised by a rounded stress-strain relationship, with no sharply defined yield point. For example, aluminium alloy grades 6061-T6, 6082-T6, and 7075-T6 exhibit low-hardening response, which is close to linear elastic-linear plastic hardening characteristics. Commonly, the behaviour of aluminium alloys is described by Ramberg-Osgood (RO) one-dimensional constitutive relationship in the format of strain in terms of stress.

View Article and Find Full Text PDF

Functionally graded materials are a class of composite materials that finds widespread use in aerospace, defense and automobile applications due to their tailored material properties for the specific need. In the present research, impact dynamics and the damage behavior of functionally graded plasma spray coating (FGPS) on an aluminium 6061-T6 substrate under high velocity impact at various temperatures were studied. The FGPS coating consists of four layers having various proportions of Al and SiC (50/50, 40/60, 30/70 and 20/80 weight percentages) and the coating thickness was measured to be 232.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!