Directly tailoring photon-electron coupling for sensitive photoconductance.

Sci Rep

National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, People's Republic of China.

Published: March 2016

The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786808PMC
http://dx.doi.org/10.1038/srep22938DOI Listing

Publication Analysis

Top Keywords

sensitive photoconductance
8
electromagnetic wave
8
energy bands
8
electrons
5
directly tailoring
4
tailoring photon-electron
4
photon-electron coupling
4
coupling sensitive
4
photoconductance coupling
4
coupling photons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!