ROS1-fusion genes, resulting from chromosomal rearrangement, have been reported in 1-2% of human non-small cell lung cancer cases. More than 10 distinct ROS1-fusion genes, including break-point variants, have been identified to date. In this study, to investigate the in vivo oncogenic activities of one of the most frequently detected fusions, CD74-ROS1, as well as another SDC4-ROS1 fusion that has also been reported in several studies, we generated transgenic (TG) mouse strains that express either of the two ROS1-fusion genes specifically in lung alveolar type II cells. Mice in all TG lines developed tumorigenic nodules in the lung, and a few strains of both TG mouse lines demonstrated early-onset nodule development (multiple tumor lesions present in the lung at 2-4 weeks after birth); therefore, these two strains were selected for further investigation. Tumors developed progressively in the untreated TG mice of both lines, whereas those receiving oral administration of an ALK/MET/ROS1 inhibitor, crizotinib, and an ALK/ROS1 inhibitor, ASP3026, showed marked reduction in the tumor burden. Collectively, these data suggest that each of these two ROS1-fusion genes acts as a driver for the pathogenesis of lung adenocarcinoma in vivo The TG mice developed in this study are expected to serve as valuable tools for exploring novel therapeutic agents against ROS1-fusion-positive lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgw028DOI Listing

Publication Analysis

Top Keywords

ros1-fusion genes
16
ros1-fusion-positive lung
8
lung cancer
8
mice lines
8
lung
7
mouse models
4
models ros1-fusion-positive
4
lung cancers
4
cancers application
4
application analysis
4

Similar Publications

Background: Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct with a poor prognosis owing to limited therapeutic options. The incidence of intrahepatic CCA (iCCA) is increasing worldwide, and its molecular basis is emerging. Environmental factors may contribute to regional differences in the mutation spectrum of European patients with iCCA, which are underrepresented in systematic genomic and transcriptomic studies of the disease.

View Article and Find Full Text PDF
Article Synopsis
  • Companion diagnostic (CDx) tests are crucial for identifying genetic mutations in lung cancer that can help tailor specific therapies for patients.
  • In Japan, the Oncomine Dx target test (ODxTT) and the AmoyDx pan lung cancer PCR panel have different methods and target regions, leading to potential missing of important mutations.
  • A comparison of 1059 genetic alterations revealed a high agreement (97.6%) between the two tests, but also identified undetected and false-positive results, underscoring the need for careful selection of diagnostic tests in precision medicine.
View Article and Find Full Text PDF

The current study assessed the performance of the fully automated RT-PCR-based Idylla™ GeneFusion Assay, which simultaneously covers the advanced non-small cell lung carcinoma (aNSCLC) actionable ALK, ROS1, RET, and MET exon 14 rearrangements, in a routine clinical setting involving 12 European clinical centers. The Idylla™ GeneFusion Assay detects fusions using fusion-specific as well as expression imbalance detection, the latter enabling detection of uncommon fusions not covered by fusion-specific assays. In total, 326 archival aNSCLC formalin-fixed paraffin-embedded (FFPE) samples were included of which 44% were resected specimen, 46% tissue biopsies, and 9% cytological specimen.

View Article and Find Full Text PDF

Aims: Inflammatory myofibroblastic tumour (IMT) is a rare mesenchymal neoplasm of intermediate malignant potential, occurring at any age and at multiple sites. Epithelioid inflammatory myofibroblastic sarcoma (EIMS) is an aggressive subtype of IMT, typically involving the abdomen. Most IMTs harbour kinase gene fusions, especially involving ALK and ROS1, but 20-30% of IMTs show no detectable translocations.

View Article and Find Full Text PDF

The treatment of non-small cell lung cancer (NSCLC) patients harboring a proto-oncogene tyrosine-protein kinase c-ros oncogene 1 (ROS1) fusion gene has greatly benefited from the use of crizotinib. However, drug resistance inevitably occurs after 1 year of treatment. Clinical studies have shown that patients with an L2026M mutation in the ROS1 kinase domain account for about 6% of the total number of crizotinib-resistant cases, which is an important group that cannot be ignored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!