Background: Albumin 1b peptides (A1b) are small disulfide-knotted insecticidal peptides produced by Fabaceae (also called Leguminosae). To date, their diversity among this plant family has been essentially investigated through biochemical and PCR-based approaches. The availability of high-quality genomic resources for several fabaceae species, among which the model species Medicago truncatula (Mtr), allowed for a genomic analysis of this protein family aimed at i) deciphering the evolutionary history of A1b proteins and their links with A1b-nodulins that are short non-insecticidal disulfide-bonded peptides involved in root nodule signaling and ii) exploring the functional diversity of A1b for novel bioactive molecules.
Results: Investigating the Mtr genome revealed a remarkable expansion, mainly through tandem duplications, of albumin1 (A1) genes, retaining nearly all of the same canonical structure at both gene and protein levels. Phylogenetic analysis revealed that the ancestral molecule was most probably insecticidal giving rise to, among others, A1b-nodulins. Expression meta-analysis revealed that many A1b coding genes are silent and a wide tissue distribution of the A1 transcripts/peptides within plant organs. Evolutionary rate analyses highlighted branches and sites with positive selection signatures, including two sites shown to be critical for insecticidal activity. Seven peptides were chemically synthesized and folded in vitro, then assayed for their biological activity. Among these, AG41 (aka MtrA1013 isoform, encoded by the orphan TA24778 contig.), showed an unexpectedly high insecticidal activity. The study highlights the unique burst of diversity of A1 peptides within the Medicago genus compared to the other taxa for which full-genomes are available: no A1 member in Lotus, or in red clover to date, while only a few are present in chick pea, soybean or pigeon pea genomes.
Conclusion: The expansion of the A1 family in the Medicago genus is reminiscent of the situation described for another disulfide-rich peptide family, the "Nodule-specific Cysteine-Rich" (NCR), discovered within the same species. The oldest insecticidal A1b toxin was described from the Sophorae, dating the birth of this seed-defense function to more than 58 million years, and making this model of plant/insect toxin/receptor (A1b/insect v-ATPase) one of the oldest known.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785745 | PMC |
http://dx.doi.org/10.1186/s12870-016-0745-0 | DOI Listing |
Int J Biol Macromol
January 2025
College of Life Science, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Plant Germplasm Introduction and Testing Research Unit, USDA-ARS, Prosser, WA 99350, USA.
Developing drought-resistant alfalfa ( L.) that maintains high biomass yield is a key breeding goal to enhance productivity in water-limited areas. In this study, 424 alfalfa breeding families were analyzed to identify molecular markers associated with biomass yield under drought stress and to predict high-merit plants.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
Multiprotein bridging factor 1 (MBF1) is a transcription factor family playing crucial roles in plant development and stress responses. In this study, we analyzed MBF1 genes in and under abiotic stresses, revealing evolutionary patterns and functional differences. Four genes were identified in and two in , with conserved MBF1 and HTH domains, similar exon/intron structures, and stress-related -elements in their promoters.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
Background/objectives: The balanced regulation of innate immunity plays essential roles in rhizobial infection and the establishment and maintenance of symbiosis. The evolutionarily conserved cell death suppressor Bax inhibitor-1 plays dual roles in nodule symbiosis, providing a valuable clue in balancing immunity and symbiosis, while it remains largely unexplored in the legume .
Methods/results: In the present report, the gene family of was identified and characterized.
Virus Evol
January 2025
Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China.
Advancements in high-throughput sequencing and associated bioinformatics methods have significantly expanded the RNA virus repertoire, including novel viruses with highly divergent genomes encoding "orphan" proteins that apparently lack homologous sequences. This absence of homologs in routine sequence similarity search complicates their taxonomic classification and raises a fundamental question: Do these orphan viral genomes represent viruses? In 2022, an orphan viral genome encoding a large polyprotein was identified in alfalfa () and thrips (), and named Snake River alfalfa virus (SRAV). SRAV was initially proposed as an uncommon flavi-like virus identified in a plant host distantly related to family .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!