The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference-NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786802 | PMC |
http://dx.doi.org/10.1038/srep22878 | DOI Listing |
Eur J Hum Genet
May 2024
AP-HP, Hôpital Necker-Enfants Malades, Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, Paris, France.
Severe ventriculomegaly is a rare congenital brain defect, usually detected in utero, of poor neurodevelopmental prognosis. This ventricular enlargement can be the consequence of different mechanisms: either by a disruption of the cerebrospinal fluid circulation or abnormalities of its production/absorption. The aqueduct stenosis is one of the most frequent causes of obstructive ventriculomegaly, however, fewer than 10 genes have been linked to this condition and molecular bases remain often unknown.
View Article and Find Full Text PDFSci Rep
March 2016
Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments.
View Article and Find Full Text PDFJ Biol Chem
September 2003
Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Totsuka-ku, Yokohama 244-0813, Japan.
A number of clinically useful anticancer drugs, including etoposide (VP-16), target DNA topoisomerase (topo) II. These drugs, referred to as topo II poisons, stabilize cleavable complexes, thereby generating DNA double-strand breaks. Bis-2,6-dioxopiperazines such as ICRF-193 also inhibit topo II by inducing a distinct type of DNA damage, termed topo II clamps, which has been believed to be devoid of double-strand breaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!