We undertook a structural and functional study of blood cell mitochondria in 25 patients with controlled mild bronchial asthma (BA) including evaluation of blood saturation with oxygen, carboxyhemoglobin level in blood and carbon monoxide content in the exhaled air. Membrane potential of leukocyte mitochondria was determined based on the results of flow cytofluorimetry and fatty acid (FA) composition in platelet mitochondrial membranes measured by GLC. It was shown that the absence of clinical symptoms of BA during remission was associated with a reduction of membrane potential and a change of FA composition resulting in the depletion of the basal pool of saturated (12:0, 14:0, 18:0) and polyunsaturated (20:4n-6, 20:5n-3, 22:5n-3, 22:4n-6) FA. These changes in the structural and functional state of blood cell mitochondria in patients with BA are signs of disordered energy-producing activity, membrane permeability and transmembrane transport suggesting the development of mitochondrial dysfunction and cellular hypoxia. A deeper insight into the role of the structural and functional state of blood cell mitochondria in the formation of respiratory disorders will facilitate early detection of the risk and complications of bronchial obstruction.
Download full-text PDF |
Source |
---|
ACS Appl Mater Interfaces
January 2025
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
Glioblastoma multiforme (GBM) is a highly invasive and fatal brain tumor with a grim prognosis, where current treatment modalities, including postoperative radiotherapy and temozolomide chemotherapy, yield a median survival of only 15 months. The challenges of tumor heterogeneity, drug resistance, and the blood-brain barrier necessitate innovative therapeutic approaches. This study introduces a strategy employing biomimetic magnetic nanorobots encapsulated with hybrid membranes derived from platelets and M1 macrophages to enhance blood-brain barrier penetration and target GBM.
View Article and Find Full Text PDFEgypt J Immunol
January 2025
Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
Multiple sclerosis (MS) is a disease of the central nervous system, characterized by progressive demyelination and inflammation. MS is characterized by immune system attacks on the myelin sheath surrounding nerve fibers. Genome-wide association studies revealed a polymorphism in the signal transducer and activator of transcription 4 (STAT4) gene that increases risk for MS.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO. Electronic address:
Purpose: Isolated coronal shear fractures of the distal humerus in adolescents are rare injuries with unique surgical challenges. Respect for the posterior blood supply, open physes, and need for direct visualization to achieve anatomic reduction are critical considerations in surgical fixation. This study presents a case series and a surgical approach used in treating these patients.
View Article and Find Full Text PDFTurk J Haematol
January 2025
Tianjin Medical University General Hospital, Department of Hematology, Tianjin, P. R. China.
Objective: Immune-related pancytopenia (IRP) is characterized by autoantibody-mediated destruction or suppression of bone marrow cells, leading to pancytopenia. This study aimed to explore the role of TRAPPC4 (trafficking protein particle complex subunit 4) as a key autoantigen in IRP, including epitope identification and immune activation mechanisms.
Methods: A total of 90 participants were included in the study, divided into four groups: 30 newly diagnosed IRP patients, 25 IRP remission patients, 20 patients with control hematologic conditions (severe aplastic anemia [SAA] and myelodysplastic syndrome [MDS]), and 15 healthy controls.
Sci Bull (Beijing)
January 2025
Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!