Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

Download full-text PDF

Source

Publication Analysis

Top Keywords

heavy oils
12
fast pyrolysis
8
bio-oil production
8
corn stalk
8
pyrolysis conditions
8
bed material
8
material maximum
8
maximum bio-oil
8
flue gas
8
bio-oil yield
8

Similar Publications

Enhancing oil recovery in sandstone reservoirs, particularly through smart water flooding, is an appealing area of research that has been thoroughly documented. However, few studies have examined the formation of water-in-heavy oil emulsion because of the incompatibility between the injected water-folded ions, clay particles, and heavy fraction in the oil phase. In this study, we investigated the synergistic roles of asphaltene and clay in the smart water flooding process using a novel experimental approach.

View Article and Find Full Text PDF

[Regulatory roles of and genes in plant oil synthesis].

Sheng Wu Gong Cheng Xue Bao

January 2025

College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi, China.

There is a large gap between production and demand of plant oil in China, which leads to the heavy reliance on imports. Diacylglycerol acyltransferase (DGAT) and phospholipid: diacylglycerol acyltransferase (PDAT) are two key enzymes responsible for the synthesis of triacylglycerol, thereby affecting the yield and quality of plant oil. This paper comprehensively reviews the research progress in and in terms of their biological functions in plant oil synthesis, the molecular mechanisms of regulating plant lipid metabolism, growth, and development under stress, and their roles in driving oil synthesis under the background of synthetic biology.

View Article and Find Full Text PDF

Purpose: Proliferative vitreoretinopathy (PVR) is a complication of retinal detachment which requires multiple vitreoretinal surgical interventions and frequent use of oil endotamponade. In this study, we conducted an in-depth analysis of complications associated with the use of heavy silicone oil in the management of inferior PVR.

Methods: A retrospective cohort study of 20 eyes that underwent vitrectomy for inferior PVR with use of heavy silicone oil (Densiron 68) between March 2021 and October 2022 at Oxford Eye Hospital.

View Article and Find Full Text PDF

Bicontinuous structures are exquisite interpenetrating constructs with an optimal balance between connectivity and surface area. Such unique geometry favors exceptional mechanical properties and efficient inward mass diffusion essential for an absorbent material. Although bicontinuous structures are found across many length scales in nature, synthesizing artificial analogs using biological building blocks remains largely unexplored.

View Article and Find Full Text PDF

Oil recovery and heat transfer performance of polyurethane sponges coated with 3D carbon nano networks.

J Hazard Mater

December 2024

Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

Heatable super hydrophobic polyurethane (PU) sponges (S-GNS/CNT/PVA@PU) containing three-dimensional (3D) carbon nano-networks (CNNs) coatings made from two-dimensional (2D) expanded graphite nano-sheets (GNS) bridged by one-dimensional (1D) carbon nano-tubes (CNT) were constructed using polyvinyl alcohol (PVA) as binder, in which light and/or electric energy could be rapidly converted into heat to reduce the viscosity of spilled heavy oils, resulting in greatly increased oil. Their heavy oil recovery rate could reach 792 kg/(m·h) under combined light and Joule heating of 1 sun and 5 V. Surface heat dissipating coefficient Ks, heat dissipating index n, and surface heat absorption capacity Cs were studied relating to sizes and shapes of surface heating fields under varied heating modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!