Abstract XPS analysis provides qualitative, quantitative and chemical state information for surface elements of solid materials. Therefore, XPS is widely applied in the characterization of refining catalyst. In the present paper, the applications of XPS in the field of typical refining catalysts, including hydrogenation catalyst, S Zorb sorbent and rare-earth modified Y zeolite, are illustrated and exemplified. For sulfided Co (Ni)-Mo (W)/Al₂O₃(-SiO₂) hydrodesulfurization catalysts, the anhydrous oxygen-free transfer process from the reactor to XPS chamber was illustrated. The identification and peak fitting of S(2p) , Mo(3d), W (4f), Co(2p) and Ni(2p) XPS spectra were summarized. The typical chemical states of the active elements were described. Based on these results, the sulfidation extents of the active metals and the cause for the sulfidation inadequency of the catalysts were deduced. As for the application of XPS in S Zorb sorbent, the existence form of zinc was obtained from ZnLMM Auger spectra, and the fracture mechanism and deactivation reason of the sorbent were derived. The distribution of sulfur along the vertical direction was investigated using XPS and argon ion sputtering XPS. Besides, in situ XPS was applied to study the conversion of sulfur- and nickel-containing species for spent sorbent under hydrogen condition. Finally, for cerium modified Y zeolite, the location of cerium ion inside and outside Y zeolite cage was investigated. The results indicate that the liquid phase method is more suitable for the migration of cerium ion toward zeolite as compared with the solid phase method.

Download full-text PDF

Source

Publication Analysis

Top Keywords

xps
9
xps applied
8
zorb sorbent
8
modified zeolite
8
cerium ion
8
phase method
8
[the application
4
application x-ray
4
x-ray photoelectron
4
photoelectron spectroscopy
4

Similar Publications

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

Sequestration of Cr(VI) onto polyethyleneimine-derivatized cellulose and its effect on the enzymatic degradation and microbiome viability.

Int J Biol Macromol

January 2025

Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India. Electronic address:

The extremely hazardous nature of Cr(VI) necessitates its sequestration in a sustainable and effective manner. Cellulose-derived materials, known for their eco-friendly properties, are widely employed in environmental remediation. To improve its adsorption capabilities for heavy metals, cellulose is often derivatized with moieties like amine, thiol, carboxylic acid, etc.

View Article and Find Full Text PDF

Annealing plays a crucial role for in enhancing the gas sensing properties of MOF-derived TiO (MIL-125). Generally, TiO transforms into different polymorphs (anatase, rutile, and brookite) during annealing, each with unique crystal structures and gas sensing properties. The aim of this research was to investigate the impact of annealing (500-650 °C) on the properties of MIL-125, which had not been previously studied.

View Article and Find Full Text PDF

A novel and high-performance tumor inhibitor of La, N co-doped carbon dots for U251 and LN229 cells.

Colloids Surf B Biointerfaces

January 2025

Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China. Electronic address:

To address the medical challenges posed by glioblastoma, a novel and high-performance tumor inhibitor (La@FA-CDs) composed of folic acid and lanthanum nitrate hexahydrate, was successfully synthesized and demonstrated effectiveness in inhibiting the growth of U251 and LN299 cells. The microstructure of La@FA-CDs was extensively analyzed by FTIR, UV-Vis, XPS, TEM, AFM NMR, and nanoparticle size analyzer. The optical and electrical properties of La@FA-CDs were characterized using a fluorescence spectrometer and a zeta potential analyzer.

View Article and Find Full Text PDF

The cyclic triangular complex - silver (I) 4-nitro-3,5-bis(trifluoromethyl)pyrazolate (Agpz) with super π-acidity shows great potential in adsorptive desulfurization (ADS) as a novel adsorbent, however, it fails to work well in the continue flow adsorption study. In order to improve its dynamic adsorption performance, a composite has been prepared by mixing Agpz and multilayer graphene (MG) in methanol. Based on the results of characterization by FT-IR, XPS, SEM, and so on, the optimal mass ratio of Agpz:MG in the synthesis is 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!