The measurement speed is an important parameter of terahertz time-domain spectroscopy (THz-TDS) instruments. To improve the measurement speed of the spectrometer we need to increase the scanning speed of the delay line. In this paper, we study the influence of the scanning speed, the time constant of lock-in amplifier and the sampling rate on the signal quality. The results show that, when the time constant equal to 10 ms, increasing the scanning speed does not cause significant changes in the amplitude of the signal. But when the time constant equal to 30, 100 and 300 ms, with the increasing of the scanning speed the signal amplitude decreases rapidly. Therefore, the time constant should be set as small as possible to avoid deterioration of signal quality. On the other hand, higher the scanning speed is, fewer data points are collected with a same time-domain length. Therefore, when the scanning speed increase, not only the time constant should be reduced, but also the sampling rate should be increased to avoid the distortion of signal waveform caused by the number reduction of data points. The conclusions can provide a reference for improving the measurement speed of THz-TDS instrument.

Download full-text PDF

Source

Publication Analysis

Top Keywords

scanning speed
24
time constant
20
measurement speed
16
speed
10
improving measurement
8
speed thz-tds
8
sampling rate
8
signal quality
8
constant equal
8
increasing scanning
8

Similar Publications

Photoacoustic tomography (PAT) enables non-invasive cross-sectional imaging of biological tissues, but it fails to map the spatial variation of speed-of-sound (SOS) within tissues. While SOS is intimately linked to density and elastic modulus of tissues, the imaging of SOS distribution serves as a complementary imaging modality to PAT. Moreover, an accurate SOS map can be leveraged to correct for PAT image degradation arising from acoustic heterogeneities.

View Article and Find Full Text PDF

Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane).

ACS Appl Bio Mater

January 2025

Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.

Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness.

View Article and Find Full Text PDF

Sustainable extraction of phytoestrogens from soybean and okara using green solvents.

Food Res Int

February 2025

Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil. Electronic address:

Soy extract waste, okara, is a rich source of bioactive compounds such as isoflavones, which are phytoestrogens with potential health benefits. To develop a green approach to recovering these compounds and valorizing okara, a study was developed to screen variables for the extraction of isoflavones from okara and soybean (for comparison) using Deep Eutectic Solvents (DES) composed with choline chloride ([Ch]Cl) and acetic acid (AA) ([Ch]Cl: AA, 1:2). A fractional design (2) was used to evaluate variables in the extraction of isoflavones, followed by a Central Composite Rotatable Design (CCRD).

View Article and Find Full Text PDF

Background: With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!