Polycyclic aromatic compounds are important constituents of pharmaceuticals and other materials. We have developed a series of Rh-catalyzed tandem carbonylative benzannulations for the synthesis of tri-, tetra-, and pentacyclic heterocycles from different types of aryl propargylic alcohols. These tandem reactions provide efficient access to highly substituted carbazoles, furocarbazoles, pyrrolocarbazoles, thiophenocarbazoles, and indolocarbazoles. While tricyclic heterocycles could be derived from vinyl aryl propargylic alcohols, tetra- and pentacyclic heterocycles were synthesized from diaryl propargylic alcohols. The tandem carbonylative benzannulation is initiated by a π-acidic rhodium(I) catalyst-mediated nucleophilic addition to alkyne to generate a key metal-carbene intermediate, which is then trapped by carbon monoxide to form a ketene species for 6π electrocyclization. Overall, three bonds and two rings are formed in all of these tandem carbonylative benzannulation reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.6b00212DOI Listing

Publication Analysis

Top Keywords

tandem carbonylative
16
propargylic alcohols
12
carbonylative benzannulations
8
tetra- pentacyclic
8
pentacyclic heterocycles
8
aryl propargylic
8
alcohols tandem
8
carbonylative benzannulation
8
tandem
5
synthesis carbazoles
4

Similar Publications

In vitro metabolism of seven arolyl-derived fentanyl-type new psychoactive substances.

Arch Toxicol

January 2025

School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.

Over the past decade, fentanyl-type new psychoactive substances (F-NPS) have emerged as the most representative synthetic opioids in third-generation drugs. These substances are characterized by their "low" fatal dose and parent drug levels in biological matrices, "fast" rates of derivatization and metabolism, and "many" derivatization sites and analogs. The low levels of parent fentanyl NPS in biological matrices complicate their detection, necessitating the use of characteristic metabolites as biomarkers for forensic analysis.

View Article and Find Full Text PDF

Quantitative profiling of PTM stoichiometry by DNA mass tags.

Bioorg Med Chem

December 2024

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China. Electronic address:

Article Synopsis
  • Protein post-translational modification (PTM) is crucial for regulating protein function, and understanding the proportion of modified proteins, known as PTM stoichiometry, is important for studying these modifications.
  • The researchers developed a new method called "STO-MS+" that improves upon the original "STO-MS" technique by using a better mass tag and a label-free analysis to enhance measurement efficiency and precision.
  • STO-MS+ was successfully applied to measure the stoichiometry of three specific PTMs, showcasing significant advancements in the analysis of post-translational modifications in biological samples.
View Article and Find Full Text PDF

General access to furan-substituted -difluoroalkenes enabled by PFTB-promoted cross-coupling of ene-yne-ketones and difluorocarbene.

Chem Sci

December 2024

Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China

Replacement of a carbonyl group with fluorinated bioisostere (, CF[double bond, length as m-dash]C) has been adopted as a key tactical strategy in drug design and development, which typically improves potency and modulates lipophilicity while maintaining biological activity. Consequently, new -difluoroalkenation reactions have undoubtedly accelerated this shift, and conceptually innovative practices would be of great benefit to medicinal chemists. Here we describe an expeditous protocol for the direct assembly of furan-substituted -difluoroalkenes PFTB-promoted cross-coupling of ene-yne-ketones and difluorocarbene.

View Article and Find Full Text PDF

The performance of narrow-bandgap (NBG) perovskite solar cells (PSCs) is limited by the severe nonradiative recombination and carrier transport barrier at the electron selective interface. Here, we reveal the importance of the molecular orientation for effective defect passivation and protection for Sn at the perovskite/C interface. We constructed an internally self-anchored dual-passivation (ISADP) layer, where the orientation of PCBM can be significantly enhanced by the interaction between ammonium and carbonyl groups.

View Article and Find Full Text PDF

Ameliorating Defects in Wide Bandgap Tin Perovskite Solar Cells Using Fluorinated Solvent and Hydrazide.

Small

December 2024

Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

Surface passivation with multifunctional molecules is an effective strategy to mitigate the defect and improve the performance and stability of perovskite solar cells (PSCs). Here, the fabrication of a wide bandgap-PSC is reported with tin perovskite (WB-Sn-HP; bandgap: 1.68 eV), followed by molecular surface passivation using 4-Fluoro-benzohydrazide (F-BHZ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!