Polycyclic aromatic compounds are important constituents of pharmaceuticals and other materials. We have developed a series of Rh-catalyzed tandem carbonylative benzannulations for the synthesis of tri-, tetra-, and pentacyclic heterocycles from different types of aryl propargylic alcohols. These tandem reactions provide efficient access to highly substituted carbazoles, furocarbazoles, pyrrolocarbazoles, thiophenocarbazoles, and indolocarbazoles. While tricyclic heterocycles could be derived from vinyl aryl propargylic alcohols, tetra- and pentacyclic heterocycles were synthesized from diaryl propargylic alcohols. The tandem carbonylative benzannulation is initiated by a π-acidic rhodium(I) catalyst-mediated nucleophilic addition to alkyne to generate a key metal-carbene intermediate, which is then trapped by carbon monoxide to form a ketene species for 6π electrocyclization. Overall, three bonds and two rings are formed in all of these tandem carbonylative benzannulation reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.6b00212 | DOI Listing |
Arch Toxicol
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
Over the past decade, fentanyl-type new psychoactive substances (F-NPS) have emerged as the most representative synthetic opioids in third-generation drugs. These substances are characterized by their "low" fatal dose and parent drug levels in biological matrices, "fast" rates of derivatization and metabolism, and "many" derivatization sites and analogs. The low levels of parent fentanyl NPS in biological matrices complicate their detection, necessitating the use of characteristic metabolites as biomarkers for forensic analysis.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China. Electronic address:
Chem Sci
December 2024
Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
Replacement of a carbonyl group with fluorinated bioisostere (, CF[double bond, length as m-dash]C) has been adopted as a key tactical strategy in drug design and development, which typically improves potency and modulates lipophilicity while maintaining biological activity. Consequently, new -difluoroalkenation reactions have undoubtedly accelerated this shift, and conceptually innovative practices would be of great benefit to medicinal chemists. Here we describe an expeditous protocol for the direct assembly of furan-substituted -difluoroalkenes PFTB-promoted cross-coupling of ene-yne-ketones and difluorocarbene.
View Article and Find Full Text PDFNano Lett
December 2024
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
The performance of narrow-bandgap (NBG) perovskite solar cells (PSCs) is limited by the severe nonradiative recombination and carrier transport barrier at the electron selective interface. Here, we reveal the importance of the molecular orientation for effective defect passivation and protection for Sn at the perovskite/C interface. We constructed an internally self-anchored dual-passivation (ISADP) layer, where the orientation of PCBM can be significantly enhanced by the interaction between ammonium and carbonyl groups.
View Article and Find Full Text PDFSmall
December 2024
Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Surface passivation with multifunctional molecules is an effective strategy to mitigate the defect and improve the performance and stability of perovskite solar cells (PSCs). Here, the fabrication of a wide bandgap-PSC is reported with tin perovskite (WB-Sn-HP; bandgap: 1.68 eV), followed by molecular surface passivation using 4-Fluoro-benzohydrazide (F-BHZ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!