In 10-20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id(+)). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ∼2-fold higher binding affinity for G6-id(+) antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id(+) BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id(+) B-CLL cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966851PMC
http://dx.doi.org/10.1080/19420862.2016.1159365DOI Listing

Publication Analysis

Top Keywords

b-cll cells
16
monoclonal antibody
12
ighv1-69 germline
12
anti-idiotypic monoclonal
8
b-cll
6
cells
6
ighv1-69
5
mug6
5
humanized
4
humanized mouse
4

Similar Publications

Chronic lymphocytic leukemia (CLL) can rarely transform into Waldenström macroglobulinemia (WM), posing diagnostic and therapeutic challenges. The diagnosis of WM requires bone marrow infiltration by lymphoplasmacytic cells and the presence of IgM gammopathy. Immunophenotypic markers include FMC7+, CD19+, CD20+, and CD138+.

View Article and Find Full Text PDF

Characterization of TFIIE-regulated genes by transcriptome analysis.

Turk J Biol

October 2024

Faculty of Science, Molecular Biology and Genetics, İhsan Doğramacı Bilkent University, Ankara, Turkiye.

Background/aim: Previous studies on general transcription factor II E (GTF2E) showed that it is associated with certain groups of diseases, such as colon cancer and trichothiodystrophy, but the global effect of GTF2E on cellular processes is still not widely characterized. This study aimed to investigate and characterize the effect of GTF2E on the transcription level of genes and identify the cellular processes and diseases associated with GTF2E.

Materials And Methods: The human colorectal carcinoma cell line HCT116 used in the study was transfected at a 30 nM concentration with siGTF2E1 or nontarget negative siRNA.

View Article and Find Full Text PDF
Article Synopsis
  • The BAG3 protein plays a key role in regulating cell survival and is being studied as a potential target for treating various cancers, particularly B-cell chronic lymphocytic leukemia (B-CLL).
  • Research shows that silencing BAG3 in stromal fibroblasts leads to increased apoptosis in B-CLL cells by disrupting critical survival signaling pathways.
  • The study highlights the link between BAG3 expression, cytokine networks, and tumor survival, suggesting that understanding these interactions could lead to new therapies for CLL.
View Article and Find Full Text PDF

presents a single nucleotide polymorphism at location 158 (V/F), which affects its binding to the fragment crystallizable (Fc) of antibodies (Abs). FcγRIIIa-158 V allotype has the highest affinity and is associated with a better clinical response to IgG1 monoclonal Abs (mAb) treatment. We compared the allele frequency of F158V polymorphism in cohorts of patients with B-cell lymphoproliferative disorders, including multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS), non-Hodgkin lymphoma (NHL), and B-cell chronic leukemia (B-CLL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!