The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to generate body heat, providing a valid explanation for the persistence of thinness in our model and supporting a major role for elevated CDKN1C in SRS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786089 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1005916 | DOI Listing |
FASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFNutrients
December 2024
Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaia, Greece.
Background/objectives: Lavender has been utilized for its medicinal properties since ancient times, with numerous health benefits reported. This study aimed to valorize solid waste from lavender essential oil production by developing a novel lavender extract from solid lavender residues. The extract's preclinical safety and efficacy were evaluated with emphasis on plasma lipid and lipoprotein metabolism, glucose tolerance, and adipose tissue metabolic activity.
View Article and Find Full Text PDFNutrients
December 2024
Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy.
Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome.
View Article and Find Full Text PDFFoods
December 2024
Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy.
Adipose tissue, particularly white adipose tissue (WAT), plays a central role in energy storage and metabolic regulation. Excess WAT, especially visceral fat, is strongly linked to metabolic disorders such as obesity and type 2 diabetes. The browning of WAT, whereby white fat cells acquire characteristics of brown adipose tissue (BAT) with enhanced thermogenic capacity, represents a promising strategy to enhance metabolic health.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!