DNA Stains as Surrogate Nucleobases in Fluorogenic Hybridization Probes.

Acc Chem Res

Department of Chemistry, Humboldt University Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.

Published: April 2016

The increasing importance assigned to RNA dynamics in cells and tissues calls for probe molecules that enable fluorescence microscopy imaging in live cells. To achieve this goal, fluorescence dyes are conjugated with oligonucleotides so as to provide strong emission upon hybridization with the target molecule. The impressive 10(3)-fold fluorescence intensification observed when DNA stains such as thiazole orange (TO) interact with double-stranded DNA is intriguing and prompted the exploration of oligonucleotide conjugates. However, nonspecific interactions of DNA stains with polynucleotides tend to increase background, which would affect the contrast achievable in live-cell imaging. This Account describes the development of DNA-stain-labeled hybridization probes that provide high signal-to-background. We focus on our contributions in context with related advances from other laboratories. The emphasis will be on the requirements of RNA imaging in live cells. To reduce background, intercalator dyes such as TO were appended to peptide nucleic acid (PNA), which is less avidly recognized by DNA stains than DNA/RNA. Constraining the TO dye as a nucleobase surrogate in "forced intercalation (FIT) probes" improved the target specificity, presumably by helping to prevent unspecific interactions. The enforcement of TO intercalation between predetermined base pairs upon formation of the probe-target duplex provided for high brightness and enabled match/mismatch selectivity beyond stringency of hybridization. We show examples that highlight the use of PNA FIT probes in the imaging of mRNA, miRNA, and lncRNA in living cells. The "FIT approach" was recently extended to DNA probes. Signal brightness can become limiting when low-abundance targets ought to be visualized over cellular autofluorescence. We discuss strategies that further the brightness of signaling by FIT probes. Multilabeling with identical dyes does not solve the brightness issue. To avoid self-quenching, we combined two different yet spectrally overlapping fluorescent base surrogates. A hybridization-sensitive dye serves as a light collector that transfers energy to a brightly emissive acceptor dye. To improve the brilliance of single-dye probes, the "TO-nucleotide" was accompanied by an adjacent locked nucleic acid (LNA) unit. The LNA-constrained FIT probes are responsive and bright, enabling the tracking of mRNA transport in living tissue. We also show that the color repertoire of FIT probes is not restricted to the green-emissive TO but can be expanded to cyan and red. A new base surrogate (4,4-linked bisquinoline) provided up to 195-fold enhancement of the fluorescence.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.5b00546DOI Listing

Publication Analysis

Top Keywords

dna stains
16
fit probes
16
probes
8
hybridization probes
8
imaging live
8
live cells
8
nucleic acid
8
dna
6
fit
5
stains surrogate
4

Similar Publications

FOXM1 is the "Achilles' heel" of cancers and hence the potential therapeutic target for anticancer drug discovery. In this work, we selected high affinity peptides against the protein of human DNA binding domain of FOXM1 (FOXM1-DBD) from the disulfide-constrained, phage displayed random cyclic heptapeptide library Ph.D.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Limnobacter olei sp. nov., a Novel Diesel-Degrading Bacterium Isolated from Oil-Contaminated Soil.

Curr Microbiol

January 2025

Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China.

A bacterial strain P1, capable of degrading diesel and converting thiosulfate to sulfate was isolated from an oil-contaminated soil sample. The cells were Gram-stain-negative, slightly curved rods and motile with a single polar flagellum. Growth of the strain was observed at 4-45 °C (optimum at 28 °C), at pH 4.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory for Neuropathology, KU Leuven, Leuven, Belgium.

Background: In 43-63% of symptomatic Alzheimer's disease (AD) patients, there is an observed accumulation of misfolded alpha-synuclein (αSyn). Two primary αSyn subtypes have been identified based on the underlying spreading pattern of this pathology: caudo-rostral and amygdala-predominant. Interactions between pathological TDP-43, Tau, and αSyn can aggravate their spread and aggregation.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is recognized as one major, potentially modifiable risk factor for neurodegenerative disease (NDD). Autopsy studies describe a range of neuropathologies in a proportion of individuals surviving late after TBI, most frequently the tau associated pathology, chronic traumatic encephalopathy neuropathologic change (CTE-NC). In addition to tau, other NDD pathologies are described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!