Complete understanding of the ontogenesis and early development of electrical activity and its related contraction has been hampered by our inability to apply conventional electrophysiological techniques to the early embryonic heart. Direct intracellular measurement of electrical events in the early embryonic heart is impossible because the cells are too small and frail to be impaled with microelectrodes. Optical signals from voltage-sensitive dyes have provided a new and powerful tool for monitoring changes in membrane potential in a wide variety of living preparations. With this technique it is possible to make optical recordings from cells which are inaccessible to microelectrodes. An additional advantage of the optical method for recording membrane potential activity is that electrical activity can be monitored simultaneously from many sites in a preparation. Thus, applying a multiple-site optical recording method with a 100- or 144-element photodiode array and voltage-sensitive dyes, we have been able to monitor for the first time spontaneous electrical activity in pre-fused cardiac primordia in early chick embryos at the 6- and early 7-somite stages of development; we have been able to determine that the time of initiation of the heartbeat is the middle period of the 9-somite stage. In the rat embryonic heart, the onset of spontaneous electrical activity and contraction occurs at the 3-somite stage. This article describes ionic properties of the spontaneous action potential and genesis of excitation-contraction coupling in the early embryonic chick and rat hearts. In addition, an improved view of the ontogenetic sequence of spontaneous electrical activity and its implications for excitation-contraction coupling in the early embryonic heart are proposed and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0065-227x(89)90004-xDOI Listing

Publication Analysis

Top Keywords

electrical activity
24
early embryonic
20
embryonic heart
20
excitation-contraction coupling
12
coupling early
12
spontaneous electrical
12
early
8
activity contraction
8
voltage-sensitive dyes
8
membrane potential
8

Similar Publications

Introduction: Data on circumstances of sudden cardiac arrest (SCA) in Germany are limited. The present study aimed to investigate systematically the current pre- and in-hospital circumstances of a SCA cohort at young age (65 years or younger) in Germany.

Methods: In the period from 2010 to 2021, we enrolled 191 consecutive patients with SCA at a university hospital in the Ruhr area, Germany.

View Article and Find Full Text PDF

The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.

View Article and Find Full Text PDF

The developing brain undergoes a remarkable process of synapse production and maturation, particularly in glutamatergic synapses. In this study, we focused on the locus coeruleus (LC) nucleus, a brain region crucial for cognitive functions, to investigate the developmental changes in glutamatergic synaptic connections. Using the whole-cell patch clamp method, we recorded evoked excitatory postsynaptic currents (eEPSCs) from LC neurons in rats at ages 7, 14, and 21 days.

View Article and Find Full Text PDF

The quality grade of cow meat is often lower than that of steer meat, resulting in economic losses and reduced consumer satisfaction. This review explores various strategies for improving the quality of cow meat, with a focus on slaughter and post-slaughter practices. Certain slaughter methods, including electrical stimulation and suspension techniques, have been shown to improve meat tenderness by alleviating rigor mortis and inducing an increase in sarcomere length.

View Article and Find Full Text PDF

This literature review explores the emerging role of digital twin (DT) technology in ophthalmology, emphasizing its potential to revolutionize personalized medicine. DTs integrate diverse data sources, including genetic, environmental, and real-time patient data, to create dynamic, predictive models that enhance risk assessment, surgical planning, and postoperative care. The review highlights vital case studies demonstrating the application of DTs in improving the early detection and management of diseases such as glaucoma and age-related macular degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!