Recent advances in understanding nuclear size and shape.

Nucleus

a Department of Molecular Biology , University of Wyoming, Laramie , WY USA.

Published: April 2016

AI Article Synopsis

  • Size and shape of the cell nucleus are crucial, with changes linked to various diseases, but it remains unclear how these changes affect health.
  • Recent advances in understanding what controls nuclear morphology include aspects like nucleocytoplasmic transport and the role of the cell cycle and organelles.
  • Future research using new experimental technologies could unveil how nuclear size impacts cell function and disease, particularly through effects on chromatin organization.

Article Abstract

Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916884PMC
http://dx.doi.org/10.1080/19491034.2016.1162933DOI Listing

Publication Analysis

Top Keywords

nuclear size
24
size shape
16
nuclear morphology
16
nuclear
12
altered nuclear
12
advances understanding
8
size
8
understanding mechanisms
8
understanding nuclear
4
shape
4

Similar Publications

Standardised lung function metrics in healthy athletes.

Scand J Clin Lab Invest

January 2025

Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

The objective of the current review was to identify whether clinically established lung function metrics of ventilatory and diffusion capacity obtained by standardised methodology are consistent with superior lung function in athletes, and whether this is related to maximal oxygen uptake (V̇O). Three independent reviewers performed a literature search in PubMed, Scopus, and reference screening. Data was extracted and analysed according to a predefined strategy.

View Article and Find Full Text PDF

Chronic wounds, due to their high prevalence, are a serious global health concern. Effective therapeutic strategies can significantly accelerate healing, thereby reducing the risk of complications and alleviating the economic burden on healthcare systems. Although numerous experimental studies have investigated wound healing, most rely on qualitative observations or quantitative direct measurements.

View Article and Find Full Text PDF

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.

View Article and Find Full Text PDF

Highly efficient construction of monkey blastoid capsules from aged somatic cells.

Nat Commun

January 2025

State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.

Blastoids-blastocyst-like structures created in vitro-emerge as a valuable model for early embryonic development research. Non-human primates stem cell-derived blastoids are an ethically viable alternative to human counterparts, yet the low formation efficiency of monkey blastoid cavities, typically below 30%, has limited their utility. Prior research has predominantly utilized embryonic stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!