Biostability enhancement of oil core - polysaccharide multilayer shell via photoinitiator free thiol-ene 'click' reaction.

Colloids Surf B Biointerfaces

Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; Università degli Studi di Napoli Federivo II, Centro di Ricerca Interdipartimentale sui Biomateriali, CRIB, Piazzale Tecchio 80, 80125 Napoli, Italy.

Published: June 2016

Layer-by-layer of polyelectrolytes has emerged as one of the easiest and most controlled techniques to deposit ultrathin polymer layers mainly driven by electrostatic interactions. However, this kind of interaction results to be weak and easily breakable in physiological environment. Here we report on the preparation of nanocapsules completely made of natural biomaterials: a lipophilic core (soybean oil and egg lecithin as surfactant) as nanometric template and a polysaccharide-based multilayer shell (glycol chitosan and heparin) covalently cross-linked. We first modified glycol chitosan with a thiol moiety and heparin with an alkene moiety, respectively, and then we built a polymer multilayer film with a covalent cross-linkage among layers, exploiting the light initiated thiol-ene reaction, known as click chemistry. We showed the possibility to perform the covalent cross-linkage without any photoinitiator or metal catalyst, thus avoiding cytotoxic effects and further purification steps. The so realized nanocapsules resulted to be stable and completely biocompatible and, therefore, of interest for the biotechnology fields, mainly for drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2016.02.063DOI Listing

Publication Analysis

Top Keywords

multilayer shell
8
glycol chitosan
8
covalent cross-linkage
8
biostability enhancement
4
enhancement oil
4
oil core
4
core polysaccharide
4
polysaccharide multilayer
4
shell photoinitiator
4
photoinitiator free
4

Similar Publications

Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.

View Article and Find Full Text PDF

This study explores the impact of metallic shells by electroforming method on the mechanical behavior of thermoplastic polyurethane (TPU)-based lattice structures. First, the TPU lattice structures were printed by additive manufacturing technique. Then layers of Ni and Cu as a thin shell were dressed on the TPU lattice structures in the electroforming baths of Ni and Cu solutions.

View Article and Find Full Text PDF

Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles.

Int J Mol Sci

December 2024

Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland.

To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug (LV-PCL) with a hydrolytic release mechanism.

View Article and Find Full Text PDF

Physics and Chemistry of Two-Dimensional Triangulene-Based Lattices.

Acc Chem Res

January 2025

Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany.

ConspectusTriangulene (TRI) and its heterotriangulene (HT) derivatives are planar, triangle-shaped molecules that, via suitable coupling reactions, can form extended organic two-dimensional (2D) crystal (O2DC) structures. While TRI is a diradical, HTs are either closed-shell molecules or monoradicals which can be stabilized in their cationic form.Triangulene-based O2DCs have a characteristic honeycomb-kagome lattice.

View Article and Find Full Text PDF

A multilayer core-shell heterostructure with CoNi-LDH as the core and NiS nanosheets as the shell is deposited on MXene-coated carbon nanofibers by electrospinning and electrochemical deposition. This unique structure not only combines highly conductive and hydrophilic one-dimensional carbon nanofibers but also exposes abundant two-dimensional reactive sites and multiple ion diffusion channels to maximize material utilization, enhance electron transfer kinetics, accelerate Faraday reaction, high capacitance and strong stability. The CNNS@MXCF electrode exhibits outstanding electrochemical characteristics, including a capacity of 1441.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!