In this paper, we have prepared a stimuli-responsive polymer modified gadolinium doped iron oxide nanoparticle (poly@Gd-MNPs) as cancer theranostic agent. The responsive polymer is composed of the poly(N-isopropyl acrylamide)-co-tyrosine unit, which shows excellent loading for the anti-cancer drug (methotrexate) and stimuli dependent release (change in pH and temperature). The in vitro experiment revealed that the poly@Gd-MNPs exhibited T1-weighted MRI capability (r1=11.314mM(-1)s(-1)) with good in-vitro hyperthermia response. The prepared poly@Gd-MNPs has generated quick heating (45°C in 2min) upon exposure to an alternating magnetic field and able to travel a distance of 35cm in 1min in the presence of an external magnet. The poly@Gd-MNPs shows 86% of drug loading capacity with 70% drug release in first 2h. The cytotoxic assay (MTT) demonstrated that the nanoparticle did not affect the viability of normal human fibroblast and efficiently kill the MCF7 cancer cells in the presence of an external magnetic field. To explore the uptake of poly@Gd-MNPs in the cells, bright field cell imaging study was also performed. This study provides a valuable approach for the design of highly sensitive polymer modified gadolinium doped iron oxide-based T1 contrast agents for cancer theranostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2016.02.053 | DOI Listing |
J Food Sci
January 2025
Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.
View Article and Find Full Text PDFResearch (Wash D C)
July 2023
State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Engineering, Hunan University, Changsha 410082, China.
The majority of atherothrombotic events (e.g., cerebral or myocardial infarction) often occur as a result of plaque rupture or erosion in the carotid, and thereby it is urgent to assess plaque vulnerability and predict adverse cerebrovascular events.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Selcuk University, Konya 42130, Turkey.
The montmorillonite@iron oxide@silver (MMT@FeO@Ag) nanocomposite, which is recyclable and exhibits high catalytic activity, was evaluated for the degradation of methyl yellow (MY), a carcinogenic azo dye. For this purpose, MMT@FeO was first synthesized via the coprecipitation method and then Ag was doped to MMT@FeO via the chemical reduction method. MMT, MMT@FeO, and MMT@FeO@Ag were characterized by various techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and thermal gravimetric analysis.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemistry and The Institute for Energy and Environment Flows, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
Hypothesis: The adsorption isotherm of alkanols at the haematite|hydrocarbon interface should reflect both chemisorption (chemically bonded fraction) and physisorption (hydrogen bonded fraction).
Experiments And Model: Quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS) have been used for characterization of FeO|hydrocarbon interfaces with absorbed alcohol. A range of FeO-terminated surfaces, alkanols, hydrocarbons and temperatures have been investigated.
Sci Total Environ
January 2025
Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal.
Atmospheric contaminants from natural processes and anthropogenic activities pose a major problem to the environment. Here we analyze the dynamics of atmospheric and terrestrial contaminant concentrations in sediments containing chemical elements, such as nanoparticles (NPs) and ultrafine particles in hydrological sources of the Caribbean region of Colombia. Terrestrial sediments were collected from 2022 to 2024, and quantified for major chemical elements in the form of NPs and ultrafine particles in runoff receiving areas along the banks of Colombia's Ciénaga Grande in Santa Marta Bay, on the Isla de Salamanca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!