BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication.

J Virol

Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Published: May 2016

Unlabelled: Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections.

Importance: Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of BPIFB6 expression correlates with pronounced defects in the secretory pathway and greatly reduces the replication of CVB, PV, and EV71. Our results thus identify a novel host cell therapeutic target whose function could be targeted to alter enterovirus replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859712PMC
http://dx.doi.org/10.1128/JVI.00170-16DOI Listing

Publication Analysis

Top Keywords

secretory pathway
24
enterovirus replication
20
bpifb6 expression
16
pathway trafficking
12
bpifb family
12
golgi complex
12
host cell
12
replication
10
bpifb6
8
bactericidal/permeability-increasing protein
8

Similar Publications

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

DKK1 and Its Receptors in Esophageal Adenocarcinoma: A Promising Molecular Target.

Diagnostics (Basel)

January 2025

First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece.

Esophageal adenocarcinoma (EAC) is an aggressive gastrointestinal (GI) malignancy with increasing incidence. Despite the recent progress in targeted therapies and surgical approaches, the survival rates of esophageal adenocarcinoma patients remain poor. The Dickkopf (DKK) proteins are secretory proteins known mainly as antagonists of the Wnt/β-catenin signaling pathway, which is considered an oncogene.

View Article and Find Full Text PDF

Insulin-Sensitizing Properties of Decoctions from Leaves, Stems, and Roots of L.

Molecules

December 2024

Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.

View Article and Find Full Text PDF

The current mechanism by which aging reduces salivary secretion is unknown. This study investigates the mechanism of aging-related submandibular (SMG) dysfunction and evaluates the therapeutic potential of dental pulp stem cell-derived exosomes (DPSC-exos). We found that the stimulated salivary flow rate was significantly reduced in naturally aging and D-galactose-induced aging mice (D-gal mice) compared to control mice.

View Article and Find Full Text PDF

TAGLN-RhoA/ROCK2-SLC2A3-mediated Mechano-metabolic Axis Promotes Skin Fibrosis.

Int J Biol Sci

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.

Skin fibrotic diseases are characterized by abnormal fibroblast function and excessive deposition of extracellular matrix. Our previous single-cell sequencing results identified an enriched fibroblast subcluster in skin fibrotic tissues that highly expresses the actin cross-linking cytoskeletal protein Transgelin (TAGLN), which bridges the mechanical environment of tissues and cellular metabolism. Therefore, we aimed to investigate the role of TAGLN in the pathogenesis of skin fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!