Rationally rewiring the connectivity of the XylR/Pu regulatory node of the m-xylene degradation pathway in Pseudomonas putida.

Integr Biol (Camb)

Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain.

Published: April 2016

AI Article Synopsis

Article Abstract

The XylR/Pu regulatory node of the m-xylene biodegradation pathway of Pseudomonas putida mt-2 is one of the most intricate cases of processing internal and external cues into a single controlling element. Despite this complexity, the performance of the regulatory system is determined in vivo only by the occupation of Pu by m-xylene-activated XylR and σ(54)-RNAP. The stoichiometry between these three elements defines natural system boundaries that outline a specific functional space. This space can be expanded artificially following different strategies that involve either the increase of XylR or σ(54) or both elements at the same time (each using a different inducer). In this work we have designed a new regulatory architecture that drives the system to reach a maximum performance in response to one single input. To this end, we first explored using a simple mathematical model whether the output of the XylR/Pu node could be amended by simultaneously increasing σ(54) and XylR in response to only natural inducers. The exacerbation of Pu activity in vivo was tested in strains bearing synthetic transposons encoding xylR and rpoN (the σ(54) coding gene) controlled also by Pu, thereby generating a P. putida strain with the XylR/Pu output controlled by two intertwined feed forward loops (FFLs). The lack of a negative feedback loop in the expression node enables Pu activity to reach its physiological maximum in response to a single input. Only competition for cell resources might ultimately check the upper activity limit of such a rewired m-xylene sensing device.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5ib00310eDOI Listing

Publication Analysis

Top Keywords

xylr/pu regulatory
8
regulatory node
8
node m-xylene
8
pathway pseudomonas
8
pseudomonas putida
8
response single
8
single input
8
rationally rewiring
4
rewiring connectivity
4
xylr/pu
4

Similar Publications

The XylR/Pu regulatory node of the m-xylene biodegradation pathway of Pseudomonas putida mt-2 is one of the most intricate cases of processing internal and external cues into a single controlling element. Despite this complexity, the performance of the regulatory system is determined in vivo only by the occupation of Pu by m-xylene-activated XylR and σ(54)-RNAP. The stoichiometry between these three elements defines natural system boundaries that outline a specific functional space.

View Article and Find Full Text PDF

The extant layout of the σ(54) promoter Pu, harboured by the catabolic TOL plasmid, pWW0, of Pseudomonas putida is one of the most complex instances of endogenous and exogenous signal integration known in the prokaryotic domain. In this regulatory system, all signal inputs are eventually translated into occupation of the promoter sequence by either of two necessary components: the m-xylene responsive transcriptional factor XylR and the σ(54) containing form of RNA polymerase. Modelling of these components indicated that the Pu promoter could be upgraded to respond with much greater capacity to aromatic inducers by artificially increasing the endogenous levels of both XylR and the σ(54) sigma factor, either separately or together.

View Article and Find Full Text PDF

Pseudomonas-derived regulators DmpR and XylR are structurally and mechanistically related sigma(54)-dependent activators that control transcription of genes involved in catabolism of aromatic compounds. The binding of distinct sets of aromatic effectors to these regulatory proteins results in release of a repressive interdomain interaction and consequently allows the activators to promote transcription from their cognate target promoters. The DmpR-controlled Po promoter region and the XylR-controlled Pu promoter region are also similar, although homology is limited to three discrete DNA signatures for binding sigma(54) RNA polymerase, the integration host factor, and the regulator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!