Humans, monkeys, and other animals are considered to have the cognitive ability to use functional categories--that is, stimulus groups based on functional equivalence independent of physical properties. To investigate the underlying neural mechanisms of the use of functional categories, we recorded single-unit activity in the prefrontal cortex of monkeys performing a behavioral task in which the rule-dependent usage of functional category was needed to select an appropriate response. We found a neural correlate of functional categories on the single-neuron level and found that category information is coded independently of other task-relevant information such as rule and contingency information. Analysis of the time course of the information activation suggested that contingency information used for action selection is derived by integrating incoming category information with rule information maintained throughout a session. Such neural computation can be considered as the neural background of flexible behavioral control based on category and rule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601756PMC
http://dx.doi.org/10.1523/JNEUROSCI.2063-15.2016DOI Listing

Publication Analysis

Top Keywords

functional category
8
prefrontal cortex
8
functional categories
8
category rule
8
category
5
functional
5
representation functional
4
category monkey
4
monkey prefrontal
4
cortex rule-dependent
4

Similar Publications

Forty years of seasonal affective disorder.

Psychiatr Pol

October 2024

Uniwersytet Medyczny w Poznaniu.

In 2024, we observe the fortieth anniversary of the publication, where, for the first time, the term of Seasonal Affective Disorder (SAD) was used. Presently, SAD is regarded as a special category of mood disorder. In the American Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-V), the seasonality makes a specifier, "with seasonal pattern", both for recurrent depression or Major Depressive Disorder (MDD), and for Bipolar Disorder (BD).

View Article and Find Full Text PDF

The optimal duration of on-scene cardiopulmonary resuscitation (CPR) for out-of-hospital cardiac arrest (OHCA) patients remains uncertain. Determining this critical time period requires outweighing the potential risks associated with intra-arrest transport while minimizing delays in accessing definitive hospital-based treatments. This study evaluated the association between on-scene CPR duration and 30-day neurologically favorable survival based on the transport time interval (TTI) in patients with OHCA.

View Article and Find Full Text PDF

We intended to investigate the potential of several transitional zone (TZ) volume-related variables for the detection of clinically significant prostate cancer (csPCa) among lesions scored as Prostate Imaging Reporting and Data System (PI-RADS) category 3. Between September 2018 and August 2023, patients who underwent mpMRI examination and scored as PI-RADS 3 were queried from our institution. The diagnostic performances of prostate-specific antigen density (PSAD), TZ-adjusted PSAD (TZPSAD), and TZ-ratio (TZ volume/whole gland prostate volume) were analyzed.

View Article and Find Full Text PDF

In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.

View Article and Find Full Text PDF

Mares with endometrosis exhibit histological changes not only in the endometrium but also in the myometrium that suggest possible functional impairment. The molecular background of these changes is not well understood. We hypothesize that the transcriptomic profile of the mare myometrium varies depending on the degree of endometrosis in mares.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!