The ability to temporarily store and manipulate information in working memory is a hallmark of human intelligence and differs considerably across individuals, but the structural brain correlates underlying these differences in working memory capacity (WMC) are only poorly understood. In two separate studies, diffusion MRI data and WMC scores were collected for 70 and 109 healthy individuals. Using a combination of probabilistic tractography and network analysis of the white matter tracts, we examined whether structural brain network properties were predictive of individual WMC. Converging evidence from both studies showed that lateral prefrontal cortex and posterior parietal cortex of high-capacity individuals are more densely connected compared with low-capacity individuals. Importantly, our network approach was further able to dissociate putative functional roles associated with two different pathways connecting frontal and parietal regions: a corticocortical pathway and a subcortical pathway. In Study 1, where participants were required to maintain and update working memory items, the connectivity of the direct and indirect pathway was predictive of WMC. In contrast, in Study 2, where participants were required to maintain working memory items without updating, only the connectivity of the direct pathway was predictive of individual WMC. Our results suggest an important dissociation in the circuitry connecting frontal and parietal regions, where direct frontoparietal connections might support storage and maintenance, whereas subcortically mediated connections support the flexible updating of working memory content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601754 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1376-14.2016 | DOI Listing |
Geroscience
December 2024
Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124, Thessaloniki, Greece.
The accurate diagnosis of aging-related neurocognitive disorders as early as possible, even in a phase that is characterized by the absence of clinical symptoms, is nowadays the holy grail of the neurosciences. R4Alz-R is a novel cognitive tool designed to objectively detect the subtle cognitive changes that emerge as the very first result of the aging processes and could be developed and broadened in a continuum from healthy aging to subjective cognitive impairment (SCI) and mild cognitive impairment (MCI), before reaching some type of dementia. The goal of the present study was to examine whether the R4Alz-R battery has the potential to detect these subtle changes.
View Article and Find Full Text PDFJ Pers Med
December 2024
Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
: Controlling hypertension may reduce the risk of cognitive impairment. A marker for the identification of hypertensive patients who are more likely to suffer cognitive impairment would be of clinical benefit. In our research, 105 patients with newly diagnosed primary hypertension were assessed at the Department of Neurology, the University of Debrecen.
View Article and Find Full Text PDFGeriatrics (Basel)
December 2024
Department of Occupational Therapy, School of Health Sciences, Fukushima Medical University, Fukushima 960-8516, Japan.
Maintaining functional independence and minimizing disability among older adults living in the community is paramount for mitigating rising care demands. Our study focused on shopping as a critical instrumental activity of daily living (ADL) to explore the association between shopping assistance and functional decline among older individuals receiving support through long-term care insurance (LTCI). This retrospective, cross-sectional study included 6202 participants aged >65 years living in a Japanese regional town receiving LTCI support, suggesting that they required assistance with local community life.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523808, China.
In this paper, a deep reinforcement learning (DRL) approach based on generative adversarial imitation learning (GAIL) and long short-term memory (LSTM) is proposed to resolve tracking control problems for robotic manipulators with saturation constraints and random disturbances, without learning the dynamic and kinematic model of the manipulator. Specifically, it limits the torque and joint angle to a certain range. Firstly, in order to cope with the instability problem during training and obtain a stability policy, soft actor-critic (SAC) and LSTM are combined.
View Article and Find Full Text PDFClocks Sleep
December 2024
UR2NF-Neuropsychology and Functional Neuroimaging Research Unit, at CRCN-Centre for Research in Cognition and Neurosciences and UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
Continued solicitation of cognitive resources eventually leads to cognitive fatigue (CF), i.e., a decrease in cognitive efficiency that develops during sustained cognitive demands in conditions of constrained processing time, independently of sleepiness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!