A dominant theory, based on electrophysiological and lesion evidence from nonhuman primate studies, posits that the dorsolateral prefrontal cortex (dlPFC) stores and maintains working memory (WM) representations. Yet, neuroimaging studies have consistently failed to translate these results to humans; these studies normally find that neural activity persists in the human precentral sulcus (PCS) during WM delays. Here, we attempt to resolve this discrepancy. To test the degree to which dlPFC is necessary for WM, we compared the performance of patients with dlPFC lesions and neurologically healthy controls on a memory-guided saccade task that was used in the monkey studies to measure spatial WM. We found that dlPFC damage only impairs the accuracy of memory-guided saccades if the damage impacts the PCS; lesions to dorsolateral dlPFC that spare the PCS have no effect on WM. These results identify the necessary subregion of the frontal cortex for WM and specify how this influential animal model of human cognition must be revised.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783492 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3618-15.2016 | DOI Listing |
Clin Psychopharmacol Neurosci
February 2025
Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Korea.
Objective: : Several studies have reported the therapeutic effects of phytoncides on various mental disorders. However, little is known about the therapeutic effects of phytoncides on mild cognitive impairment (MCI), a prodromal stage of dementia. In this pilot study, we aimed to clarify the effect of inhaled phytoncides on the cognitive function of patients clinically diagnosed with MCI.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland.
The dorsolateral prefrontal cortex (dlPFC) is increasingly targeted by various noninvasive transcranial magnetic stimulation or transcranial current stimulation protocols in a range of neuropsychiatric and other brain disorders. The rationale for this therapeutic modulation remains elusive. A model is proposed, and up-to-date evidence is discussed, suggesting that the dlPFC is a high-level cortical centre where uncertainty management, movement facilitation, and cardiovascular control processes are intertwined and integrated to deliver optimal behavioural responses in particular environmental or emotional contexts.
View Article and Find Full Text PDFPain Rep
February 2025
Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan.
Introduction: Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies.
Objectives: To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms.
Pain Rep
February 2025
Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
Repetitive transcranial magnetic stimulation (rTMS) has increasingly been used to modify cortical maladaptive plastic changes shown to occur in fibromyalgia (FM) and to correlate with symptoms. Evidence for its efficacy is currently inconclusive, mainly due to heterogeneity of stimulation parameters used in trials available to date. Here, we reviewed the current evidence on the use of rTMS for FM control in the format of a narrative review, in which a systematic dissection of the different stimulation parameters would be possible.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
January 2025
Department of Psychiatry, University of Illinois at Chicago.
Background: Self-regulation often is disrupted in depression and is characterized by negative affect and inflexible parasympathetic responses. Yet, our understanding of brain mechanisms of self-regulatory processes largely has been limited to laboratory contexts. Measuring individual differences in self-regulatory processes in everyday life - and their neural correlates - could inform our understanding of depression phenotypes and reveal novel intervention targets that impact everyday functioning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!