In this study cationic β-cyclodextrin-chitosan-mediated nanoparticles were used to transfer pmCherry-C1 into glioblastoma cells and their transfection efficiency were compared to lipofectamine and electroporation. Physicochemical characteristics of nanoparticles were evaluated by photon correlation spectroscopy and scanning electron microscopy. Electrophoretic nuclease resistance and stability assays were used to check the protection of DNA from nucleases digestion. mCherry reporter construct was used for visualization, followed by quantitation of cell survival and gene expression by fluorescence-activated cell sorting analysis and fluorescence microscopy. Particle size was approximately 200 nm and did not change at 4 °C even after 12 weeks. Importantly, the positively charged complexes interacted with DNA could serve as an efficient DNA delivery systems. Most of the gene was associated with the nanoparticles and was efficiently protected from DNAse I digestion. More than 80 % of transfected cells expressed mCherry efficiently.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-016-9927-0DOI Listing

Publication Analysis

Top Keywords

cationic β-cyclodextrin-chitosan
4
β-cyclodextrin-chitosan conjugates
4
conjugates potential
4
potential carrier
4
carrier pmcherry-c1
4
pmcherry-c1 gene
4
gene delivery
4
delivery study
4
study cationic
4
cationic β-cyclodextrin-chitosan-mediated
4

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.

View Article and Find Full Text PDF

Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.

View Article and Find Full Text PDF

Polymyxins, critical last-resort antibiotics, impact the distribution of membrane-bound divalent cations in the outer membrane of Gram-negative bacteria. We employed atomistic molecular dynamics simulations to model the effect of displacing these ions. Two polymyxin-sensitive and two polymyxin-resistant models of the outer membrane of were investigated.

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!