Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

J Biol Chem

From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS-UMR8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France, Center of Excellence, Labex Inflamex, 75013 Paris, France,

Published: May 2016

Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865899PMC
http://dx.doi.org/10.1074/jbc.M115.698639DOI Listing

Publication Analysis

Top Keywords

pr3-expressing cells
12
phosphatidylserine-binding protein
8
production function
8
granulomatosis polyangiitis
8
membrane expression
8
activation apoptosis
8
hydrophobic patch
8
respiratory burst
8
burst human
8
human neutrophils
8

Similar Publications

Objectives: Granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) are autoimmune vasculitides associated with antineutrophil cytoplasm antibodies that target proteinase 3 (PR3) or myeloperoxidase (MPO) found within neutrophils and monocytes. Granulomas are exclusively found in GPA and form around multinucleated giant cells (MGCs), at sites of microabscesses, containing apoptotic and necrotic neutrophils. Since patients with GPA have augmented neutrophil PR3 expression, and PR3-expressing apoptotic cells frustrate macrophage phagocytosis and cellular clearance, we investigated the role of PR3 in stimulating giant cell and granuloma formation.

View Article and Find Full Text PDF

Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

J Biol Chem

May 2016

From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS-UMR8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France, Center of Excellence, Labex Inflamex, 75013 Paris, France,

Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads.

View Article and Find Full Text PDF

Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines.

View Article and Find Full Text PDF

Proteinase 3 (PR3) is the target of anti-neutrophil cytoplasm Abs in granulomatosis with polyangiitis, a form of systemic vasculitis. Upon neutrophil apoptosis, PR3 is coexternalized with phosphatidylserine and impaired macrophage phagocytosis. Calreticulin (CRT), a protein involved in apoptotic cell recognition, was found to be a new PR3 partner coexpressed with PR3 on the neutrophil plasma membrane during apoptosis, but not after degranulation.

View Article and Find Full Text PDF
Article Synopsis
  • Granulomatosis with polyangiitis (GPA) is an autoimmune disease linked to upper airway infections, characterized by the presence of PR3-specific ANCAs.
  • Researchers examined biopsy samples from 77 patients, including 8 with GPA, to investigate B-cell behavior and immune responses in the disease.
  • Results showed activated B cells near PR3-expressing cells and B-cell survival factors, but no evidence of blood-derived B-cell clones in GPA patients, indicating a localized immune activation in the mucosa.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!