In-situ preparation of functionalized molecular sieve material and a methodology to remove template.

Sci Rep

Inorganic Materials &Catalysis Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India.

Published: March 2016

A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785354PMC
http://dx.doi.org/10.1038/srep22813DOI Listing

Publication Analysis

Top Keywords

molecular sieve
12
sieve sapo-37
8
microporous molecular
8
in-situ preparation
4
preparation functionalized
4
molecular
4
functionalized molecular
4
sieve material
4
material methodology
4
methodology remove
4

Similar Publications

Activation Energy of SDS-Protein Complexes in Capillary Electrophoresis with Tetrahydroxyborate Cross-Linked Agarose Gels.

Gels

December 2024

Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Medicine, University of Debrecen, 4032 Debrecen, Hungary.

Hydrogels like agarose have long been used as sieving media for the electrophoresis-based analysis of biopolymers. During gelation, the individual agarose strands tend to form hydrogen-bond mediated double-helical structures, allowing thermal reversibility and adjustable pore sizes for molecular sieving applications. The addition of tetrahydroxyborate to the agarose matrix results in transitional chemical cross-linking, offering an additional pore size adjusting option.

View Article and Find Full Text PDF

Among the most selective catalytic systems for the hydroisomerization of C-paraffins, catalytic systems based on SAPO-11 are quite promising. In order to increase the activity and selectivity of these bifunctional catalysts, it is necessary to reduce the diffusion restrictions for the reacting molecules and their products in the microporous structure of SAPO-11 by reducing the crystal size. To solve this problem, we have studied the influence of different templates (diethylamine, dipropylamine, diisopropylamine, and dibutylamine) on the physicochemical properties of reaction gels and SAPO-11 silicoaluminophosphates during their crystallization.

View Article and Find Full Text PDF

Synthetic mordenite is widely used as a molecular sieve, adsorbent, and catalyst. To enhance these functionalities, it is crucial to understand the ion-exchange properties and cation-exchange sites of the zeolite. In this study, we analyzed the structural changes in fully Cs-, Sr-, Cd-, and Pb-exchanged mordenite by using synchrotron X-ray powder diffraction under ambient conditions.

View Article and Find Full Text PDF

Angstrom-Scale Defect-Free Crystalline Membrane for Sieving Small Organic Molecules.

Adv Mater

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China.

Crystalline membranes, represented by the metal-organic framework (MOF) with well-defined angstrom-sized apertures, have shown great potential for molecular separation. Nevertheless, it remains a challenge to separate small molecules with very similar molecular size differences due to angstrom-scale defects during membrane formation. Herein, a stepwise assembling strategy is reported for constructing MOF membranes with intrinsic angstrom-sized lattice aperture lattice to separate organic azeotropic mixtures separation.

View Article and Find Full Text PDF

Molecular characterization of root-lesion nematode, Pratylenchus species, and their prevalence in New Zealand maize fields.

Lett Appl Microbiol

December 2024

Department of Soil and Physical Science, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.

Root-lesion nematodes (Pratylenchus spp.) are significant plant parasites, causing substantial crop damage worldwide. This study aimed to characterize Pratylenchus spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!