Background: Antegrade selective cerebral perfusion (ASCP) is regarded to perform cerebral protection during the thoracic aorta surgery as an adjunctive technique to deep hypothermic circulatory arrest (DHCA). However, brain metabolism profile after ASCP has not been systematically investigated by metabolomics technology.
Methods: To clarify the metabolomics profiling of ASCP, 12 New Zealand white rabbits were randomly assigned into 60 min DHCA with (DHCA+ASCP [DA] group, n = 6) and without ( DHCA [D] group, n = 6) ASCP according to the random number table. ASCP was conducted by cannulation on the right subclavian artery and cross-clamping of the innominate artery. Rabbits were sacrificed 60 min after weaning off cardiopulmonary bypass. The metabolic features of the cerebral cortex were analyzed by a nontargeted metabolic profiling strategy based on gas chromatography-mass spectrometry. Variable importance projection values exceeding 1.0 were selected as potentially changed metabolites, and then Student's t-test was applied to test for statistical significance between the two groups.
Results: Metabolic profiling of brain was distinctive significantly between the two groups (Q 2 Y = 0.88 for partial least squares-DA model). In comparing to group D, 62 definable metabolites were varied significantly after ASCP, which were mainly related to amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Kyoto Encyclopedia of Genes and Genomes analysis revealed that metabolic pathways after DHCA with ASCP were mainly involved in the activated glycolytic pathway, subdued anaerobic metabolism, and oxidative stress. In addition, L-kynurenine (P = 0.0019), 5-methoxyindole-3-acetic acid (P = 0.0499), and 5-hydroxyindole-3-acetic acid (P = 0.0495) in tryptophan metabolism pathways were decreased, and citrulline (P = 0.0158) in urea cycle was increased in group DA comparing to group D.
Conclusions: The present study applied metabolomics analysis to identify the cerebral metabolic profiling in rabbits with ASCP, and the results may shed new lights that cerebral metabolism is better preserved by ASCP compared with DHCA alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804417 | PMC |
http://dx.doi.org/10.4103/0366-6999.178012 | DOI Listing |
Funct Integr Genomics
January 2025
Department of Zoology, University of Gour Banga, Malda, 732103, India.
Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300392, China.
Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.
Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.
View Article and Find Full Text PDFBiol Open
January 2025
Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA.
The gut microbiome, which is composed of bacteria, viruses, and fungi, and is involved in multiple essential physiological processes, changes measurably as a person ages, and can be associated with negative health outcomes. Microbiome transplants have been proposed as a method to improve gut function and reduce or reverse multiple disorders, including age-related diseases. Here, we take advantage of the laboratory model organism, Drosophila melanogaster, to test the effects of transplanting the microbiome of a young fly into middle-aged flies, across multiple genetic backgrounds and both sexes, to test whether age-related lifespan could be increased, and late-life physical health declines mitigated.
View Article and Find Full Text PDFStudies generating transcriptomics, proteomics, lipidomics, and metabolomics (colloquially referred to as "omics") data allow researchers to find biomarkers or molecular targets or understand complex biological structures and functions by identifying changes in biomolecule abundance and expression between experimental conditions. Omics data are multidimensional, and oftentimes summarization techniques such as principal component analysis (PCA) are used to identify high-level patterns in data. Though useful, these summaries do not allow exploration of detailed patterns in omics data that may have biological relevance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!