Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792956 | PMC |
http://dx.doi.org/10.1038/ncomms10972 | DOI Listing |
Cell Rep
December 2024
Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA. Electronic address:
Metastasis to vital organs remains the leading cause of cancer-related deaths, emphasizing an urgent need for actionable targets in advanced-stage cancer. The role of mitochondrial Rho GTPase 2 (MIRO2) in prostate cancer growth was recently reported; however, whether MIRO2 is important for additional steps in the metastatic cascade is unknown. Here, we show that knockdown of MIRO2 ubiquitously reduces tumor cell invasion in vitro and suppresses metastatic burden in prostate and breast cancer mouse models.
View Article and Find Full Text PDFExp Anim
December 2024
Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science.
An unconventional myosin, myosin VI gene (MYO6), contributes to recessive and dominant hearing loss in humans and mice. The Kumamoto shaker/waltzer (ksv) mouse is a model of deafness resulting from a splice-site mutation in Myo6. While ksv/ksv homozygous mice are deaf due to cochlear hair cell stereocilia fusion at the neonatal stage, the hearing phenotypes of ksv/+ heterozygous mice have been less clear.
View Article and Find Full Text PDFCell Mol Life Sci
October 2024
Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
Stress granules (SGs) are non-membranous organelles composed of mRNA and proteins that assemble in the cytosol when the cell is under stress. Although the composition of mammalian SGs is both cell-type and stress-dependent, they consistently contain core components, such as Ras GTPase activating protein SH3 domain binding protein 1 (G3BP1). Upon stress, living cells rapidly assemble micrometric SGs, sometimes within a few minutes, suggesting that SG components may be actively transported by the microtubule and/or actin cytoskeleton.
View Article and Find Full Text PDFCurr Biol
November 2024
Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei, China; State Key Laboratory of Freshwater Ecology and Biotechnology, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei, China; Hubei Hongshan Laboratory, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China. Electronic address:
Caspases, well-known for their role in executing apoptosis, also participate in various non-apoptotic processes. Despite this, their involvement in promoting compensatory proliferation - a key aspect of tissue regeneration following extensive cell death - has been a subject of ongoing ambiguity. In our study, we investigate compensatory proliferation in the wing imaginal disc following ionizing radiation, a model epithelial tissue that has been a pioneering system for studying this regenerative response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!