The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton™ X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784929PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150700PLOS

Publication Analysis

Top Keywords

influenza vaccine
16
inactivation splitting
8
virus wiv
8
influenza
5
inactivation
5
vaccine manufacturing
4
manufacturing inactivation
4
splitting site
4
site manufacturing
4
manufacturing comparison
4

Similar Publications

Induction of Antigen-Specific Tolerance in a Multiple Sclerosis Model without Broad Immunosuppression.

ACS Nano

January 2025

Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

Multiple sclerosis (MS) is a severe autoimmune disorder that wreaks havoc on the central nervous system, leading to a spectrum of motor and cognitive impairments. There is no cure, and current treatment strategies rely on broad immunosuppression, leaving patients vulnerable to infections. To address this problem, our approach aims to induce antigen-specific tolerance, a much-needed shift in MS therapy.

View Article and Find Full Text PDF

Building a Fast Response Capability for Emerging Infectious Diseases Within the Biomedical Advanced Research and Development Authority.

Health Secur

January 2025

Robert A. Johnson, PhD, is Director, Medical Countermeasures Programs, and Gary L. Disbrow, PhD, is Director, Center for Biomedical Advanced Research and Development Authority (BARDA), Washington, DC. Terence M. Barnhart, PhD, is Senior Strategy Implementation Leader, Tunnell Government Services, Inc. (Contractor Supporting BARDA), Washington, DC.

From influenza to COVID-19, emerging infectious diseases have taken a heavy toll on lives and resources. Emerging infectious diseases represent one of the largest threats to national security. The primary mission of the Center for Biomedical Advanced Research and Development Authority (BARDA), within the US Administration for Strategic Preparedness and Response, is to support the advanced development of medical countermeasures (MCMs) for public health security threats, including select infectious diseases.

View Article and Find Full Text PDF

Objectives: We assessed the transmission of SARS-CoV-2 and vaccine receipt in a representative sample of wet market workers in a highly dense, low-income setting. Wet markets are key in many Asian settings, including Dhaka, Bangladesh, for fresh food, including animal protein.

Methods: During early 2022, we assessed the prevalence of anti-SARS-CoV-2 antibodies in a random sample of poultry and vegetable workers in 15 wet markets, and investigated associations with socio-demographic characteristics and COVID-19 vaccination.

View Article and Find Full Text PDF

Clade 2.3.4.4b but not historical clade 1 HA replicating RNA vaccine protects against bovine H5N1 challenge in mice.

Nat Commun

January 2025

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.

The ongoing circulation of influenza A H5N1 in the United States has raised concerns of a pandemic caused by highly pathogenic avian influenza. Although the United States has stockpiled and is prepared to produce millions of vaccine doses to address an H5N1 pandemic, currently circulating H5N1 viruses contain multiple mutations within the immunodominant head domain of hemagglutinin (HA) compared to the antigens used in stockpiled vaccines. It is unclear if these stockpiled vaccines will need to be updated to match the contemporary H5N1 strains.

View Article and Find Full Text PDF

Achieving safe influenza vaccination coverage among pregnant and breastfeeding women is a global health goal due to the potential risks of serious influenza for both mother and child. However, vaccine hesitancy remains a significant barrier to vaccination uptake. Since anxiety represents a determinant in vaccine decision-making, this study aimed to assess influenza vaccination hesitancy and anxiety levels in this population and to explore the association between women's characteristics, their reluctance, and anxiety levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!