Background/objective: Uncoupling proteins (UCPs) are located in the inner membrane of mitochondria. These proteins participate in thermogenesis and energy expenditure. This study aimed to evaluate how UCP1 and UCP3 expression influences substrate oxidation and elicits possible changes in body composition in patients submitted to bariatric surgery.

Subjects/methods: This is a longitudinal study comprising 13 women with obesity grade III that underwent bariatric surgery and 10 healthy weight individuals (control group). Body composition was assessed by bioelectrical impedance. Carbohydrate and fat oxidation was determined by indirect calorimetry. Subcutaneous adipose tissue was collected for gene expression analysis. QPCR was used to evaluate UCP1 and UCP3 expression.

Results: Obese patients and the control group differed significantly in terms of lipid and carbohydrate oxidation. Six months after bariatric surgery, the differences disappeared. Lipid oxidation correlated with the percentage of fat mass in the postoperative period. Multiple linear regression analysis showed that the UCP1 and UCP3 genes contributed to lipid and carbohydrate oxidation. Additionally, UCP3 expression was associated with BMI, percentage of lean body mass, and percentage of mass in the postoperative period.

Conclusions: UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation in patients submitted to bariatric surgery. In addition, UCP3 participates in body composition modulation six months postoperatively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784729PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150811PLOS

Publication Analysis

Top Keywords

ucp1 ucp3
20
ucp3 expression
16
lipid carbohydrate
16
carbohydrate oxidation
16
body composition
16
expression associated
12
bariatric surgery
12
associated lipid
8
evaluate ucp1
8
patients submitted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!