Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging.

ACS Nano

Key Laboratory of Protein and Peptide Pharmaceutical/Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology/Beijing Translational Engineering Center of Biomacromolecular Drugs, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China.

Published: April 2016

Despite all the advances in multimodal imaging, it remains a significant challenge to acquire both magnetic resonance and nuclear imaging in a single dose because of the enormous difference in sensitivity. Indeed, nuclear imaging is almost 10(6)-fold more sensitive than magnetic resonance imaging (MRI); thus, repeated injections are generally required to obtain sufficient MR signals after nuclear imaging. Here, we show that strategically engineered magnetoferritin nanoprobes can image tumors with high sensitivity and specificity using SPECT and MRI in living mice after a single intravenous injection. The magnetoferritin nanoprobes composed of (125)I radionuclide-conjugated human H-ferritin iron nanocages ((125)I-M-HFn) internalize robustly into cancer cells via a novel tumor-specific HFn-TfR1 pathway. In particular, the endocytic recycling characteristic of TfR1 transporters solves the nuclear signal blocking issue caused by the high dose nanoprobes injected for MRI, thus enabling simultaneous functional and morphological tumor imaging without reliance on multi-injections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b07408DOI Listing

Publication Analysis

Top Keywords

magnetoferritin nanoprobes
12
nuclear imaging
12
tumor imaging
8
magnetic resonance
8
imaging
7
bioengineered magnetoferritin
4
nanoprobes
4
nanoprobes single-dose
4
single-dose nuclear-magnetic
4
nuclear-magnetic resonance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!