HIV-associated CD4+/CD8+ depletion in infancy is associated with neurometabolic reductions in the basal ganglia at age 5 years despite early antiretroviral therapy.

AIDS

aMRC/UCT Medical Imaging Research Unit, Department of Human Biology, Faculty of Health Sciences, University of Cape Town bChildren's Infectious Diseases Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa cA.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown dDepartment of Radiology, Harvard Medical School, Boston, Massachusetts, USA eDepartment of Statistical Sciences, Faculty of Sciences, University of Cape Town, South Africa fOxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.

Published: June 2016

Objective: Investigating consequences of early or late antiretroviral therapy (ART) initiation in infancy on young brain development using magnetic resonance spectroscopy.

Design: Most pediatric HIV/ART-related neurological studies are from neuropsychological/clinical perspectives. Magnetic resonance spectroscopy can elucidate the mechanisms underpinning neurocognitive outcomes by quantifying the brain's chemical condition through localized metabolism to provide insights into health and development.

Methods: Basal ganglia metabolite concentrations were assessed in thirty-eight 5-year-old HIV-infected children previously participating in a randomized trial comparing early limited ART to deferred continuous ART, as well as 15 uninfected controls (12 HIV exposed). Metabolite levels were compared between 26 infected children who initiated ART at/before 12 weeks and 12 who initiated afterward, and were correlated with clinical HIV and treatment-related measures.

Results: HIV-infected children initiating ART after 12 weeks had lower creatine, choline and glutamate (P < 0.05) than those initiating ART at/before 12 weeks. The CD4/CD8 ratio at baseline correlated with N-acetyl-aspartate (r = 0.56, P = 0.003) and choline (r = 0.36, P = 0.03) at 5 years, irrespective of treatment regimen and ART interruption. In comparison with uninfected controls, 80% of whom were HIV-exposed in utero, children on early treatment had higher N-acetyl-aspartate (P = 0.006) and choline (P = 0.03).

Conclusions: Despite early ART (<12 weeks), low baseline CD4/CD8 predicts brain metabolite levels in later childhood. Also, HIV exposure and antiretroviral exposure for preventing vertical HIV transmission may hinder metabolite health, but needs further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864158PMC
http://dx.doi.org/10.1097/QAD.0000000000001082DOI Listing

Publication Analysis

Top Keywords

basal ganglia
8
antiretroviral therapy
8
magnetic resonance
8
hiv-infected children
8
art
5
hiv-associated cd4+/cd8+
4
cd4+/cd8+ depletion
4
depletion infancy
4
infancy associated
4
associated neurometabolic
4

Similar Publications

Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.

View Article and Find Full Text PDF

Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample.

View Article and Find Full Text PDF

D1 Receptor Functional Asymmetry at Striatonigral Neurons: A Neurochemical and Behavioral Study in Male Wistar Rats.

J Neurosci Res

January 2025

Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.

Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left.

View Article and Find Full Text PDF

Basal ganglia germinomas are uncommon neoplasms. Basal ganglia germinomas exhibit high sensitivity to both radiation therapy and chemotherapy. In contrast, surgery is the standard treatment for most primary brain tumors (such as gliomas, which are the most common tumors in the pediatric basal ganglia region).

View Article and Find Full Text PDF

Taltirelin, an orally effective thyrotropin-releasing hormone analog, significantly improves motor impairments in rat models of Parkinson's disease (PD) and enhances dopamine release within the striatum. However, the underlying mechanism remains unclear. In this study, a variety of in vivo and in vitro methods, including transcriptomic analysis, were employed to elucidate the effects of Taltirelin on cellular composition and signaling pathways in the striatum of hemi-PD rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!