A novel corneal explant model system to evaluate antiviral drugs against feline herpesvirus type 1 (FHV-1).

J Gen Virol

Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca NY 14853, United States.

Published: June 2016

Feline herpesvirus type-1 (FHV-1) is the most common viral cause of ocular surface disease in cats. Many antiviral drugs are used to treat FHV-1, but require frequent topical application and most lack well-controlled in vivo studies to justify their clinical use. Therefore, better validation of current and novel treatment options are urgently needed. Here, we report on the development of a feline whole corneal explant model that supports FHV-1 replication and thus can be used as a novel model system to evaluate the efficacy of antiviral drugs. The anti-herpes nucleoside analogues cidofovir and acyclovir, which are used clinically to treat ocular herpesvirus infection in cats and have previously been evaluated in traditional two-dimensional feline cell cultures in vitro, were evaluated in this explant model. Both drugs suppressed FHV-1 replication when given every 12 h, with cidofovir showing greater efficacy. In addition, the potential efficacy of the retroviral integrase inhibitor raltegravir against FHV-1 was evaluated in cell culture as well as in the explant model. Raltegravir was not toxic to feline cells or corneas, and most significantly, inhibited FHV-1 replication at 500 µM in both systems. Importantly, this drug was effective when given only once every 24 h. Taken together, our data indicate that the feline whole corneal explant model is a useful tool for the evaluation of antiviral drugs and, furthermore, that raltegravir appears a promising novel antiviral drug to treat ocular herpesvirus infection in cats.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.000451DOI Listing

Publication Analysis

Top Keywords

explant model
20
antiviral drugs
16
corneal explant
12
fhv-1 replication
12
model system
8
system evaluate
8
feline herpesvirus
8
feline corneal
8
treat ocular
8
ocular herpesvirus
8

Similar Publications

Systemic regulation of retinal medium-chain fatty acid oxidation repletes TCA cycle flux in oxygen-induced retinopathy.

Commun Biol

January 2025

Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA.

Activation of anaplerosis takes away glutamine from the biosynthetic pathways to the energy-producing TCA cycle. Especially, induction of hyperoxia driven anaplerosis in neurovascular tissues such as the retina during early stages of development could deplete biosynthetic precursors from newly proliferating endothelial cells impeding physiological angiogenesis and leading to vasoobliteration. Using an oxygen-induced retinopathy (OIR) mouse model, we investigated the metabolic differences between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains at system levels to understand the molecular underpinnings that potentially contribute to hyperoxia-induced vascular abnormalities in the neural retina.

View Article and Find Full Text PDF

Objective: The study objective was to investigate the effect of free-edge length on valve performance in bicuspidization repair of congenitally diseased aortic valves.

Methods: In addition to a constructed unicuspid aortic valve disease model, 3 representative groups-free-edge length to aortic diameter ratio 1.2, 1.

View Article and Find Full Text PDF

Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.

View Article and Find Full Text PDF

Intestinal Cells-on-Chip for Permeability Studies.

Micromachines (Basel)

November 2024

Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands.

Background: To accurately measure permeability of compounds in the intestine, there is a need for preclinical in vitro models that accurately represent the specificity, integrity and complexity of the human small intestinal barrier. Intestine-on-chip systems hold considerable promise as testing platforms, but several characteristics still require optimization and further development.

Methods: An established intestine-on-chip model for tissue explants was adopted for intestinal cell monolayer culture.

View Article and Find Full Text PDF

Suspension growth can greatly increase the cell density and yield of cell metabolites. To meet the requirements of aquatic industries, a culture model derived from skin was developed using the explant outgrowth and enzyme-digesting passaging methods. These cells were kept in vitro continuously for over 12 months and subcultured 68 times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!