Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784908PMC
http://dx.doi.org/10.1371/journal.pcbi.1004802DOI Listing

Publication Analysis

Top Keywords

growth
10
optimal control
8
control problem
8
microbial growth
8
growth strategies
8
growth rate
8
bacterial cells
8
control
5
dynamical
4
dynamical allocation
4

Similar Publications

Two-Dimensional Materials for Brain-Inspired Computing Hardware.

Chem Rev

January 2025

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed.

View Article and Find Full Text PDF

Single crystals that do not obey translational symmetry have been reported in various material systems. In polymers, twisted crystals are typically formed in banded spherulites, while a class of non-flat polymer single crystals (PSCs) has been observed. Herein, we report the formation of scrolled single crystals of biodegradable polymer poly(L-lactic acid) (PLLA).

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition affecting a substantial number of children globally, characterized by diverse aetiologies, including genetic and environmental factors. Emerging research suggests that neurovascular dysregulation during development could significantly contribute to autism. This review synthesizes the potential role of vascular abnormalities in the pathogenesis of ASD and explores insights from studies on valproic acid (VPA) exposure during neural tube development.

View Article and Find Full Text PDF

Importance: Cardiovascular disease (CVD) and cancer are the leading causes of mortality in the US. Large-scale population-based and mechanistic studies support a direct effect of CVD on accelerated tumor growth and spread, specifically in breast cancer.

Objective: To assess whether individuals presenting with advanced breast cancers are more likely to have prevalent CVD compared with those with early-stage breast cancers at the time of diagnosis.

View Article and Find Full Text PDF

This longitudinal study aimed to examine the long-term effects of Reminiscing and Emotion Training (RET), child maltreatment, and the COVID-19 pandemic on maternal elaboration and sensitive guidance during reminiscing. RET was developed to improve maternal elaborative and emotionally sensitive reminiscing among maltreating mothers of preschool-aged children. Of the original 248 mothers and their preschool-aged children who participated in the trial of RET, which included 165 families with maltreatment who were randomized to receive RET ( = 83) or a case management community standard condition (CS, = 82), and a group of demographically similar families with no history of child maltreatment, nonmaltreatment comparison (NC, = 83), 166 families participated in an assessment 5 years postintervention (Time 5; T5) at which children were aged 8-12 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!