Avian metapneumovirus (AMPV) infection of poultry causes serious disease in most countries and subtype A reverse-genetic (RG) systems have allowed a generation of viruses of known sequence, and proved useful in developments towards better control by live vaccines. While subtype B viruses are more prevalent, bacterial cloning issues made subtype B RG systems difficult to establish. A molecular comparison of subtype A and B viruses was undertaken to assess whether subtype A RG components could be partially or fully substituted. AMPV subtype A and B gene-end sequences leading to polyadenylation are, to our knowledge, reported for the first time, as well as several leader and trailer sequences. After comparing these alongside previously reported gene starts and protein sequences, it was concluded that subtype B genome copies would be most likely rescued by a subtype A support system, and this assertion was supported when individual subtype A components were successfully substituted. Application of an advanced cloning plasmid permitted eventual completion of a fully subtype B RG system, and proved that all subtype-specific components could be freely exchanged between A and B systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jgv.0.000450 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.
Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.
BMC Cancer
January 2025
Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland.
Aim: The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs).
Materials And Methods: DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes.
BMC Med Genomics
January 2025
Administrative Office, The Fourth People's Hospital of Nanning, Nanning, China.
Background: Chronic obstructive pulmonary disease (COPD) is a chronic and progressive lung disease. Disulfidptosis-related genes (DRGs) may be involved in the pathogenesis of COPD. From the perspective of predictive, preventive, and personalized medicine (PPPM), clarifying the role of disulfidptosis in the development of COPD could provide a opportunity for primary prediction, targeted prevention, and personalized treatment of the disease.
View Article and Find Full Text PDFBMC Med
January 2025
Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
Background: The heterogeneity of cognitive impairments in schizophrenia has been widely observed. However, reliable cognitive boundaries to differentiate the subgroups remain elusive. The key challenge for cognitive subtyping is applying an integrated and standardized cognitive assessment and understanding the subgroup-specific neurobiological mechanisms.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Emergency, Nantong Haimen District People's Hospital, No. 1201 Peking Road, Haimen District, Nantong, 226100, China.
Background: Intracerebral hemorrhage (ICH) is a common subtype of stroke, characterized by a high mortality rate and a tendency to cause neurological damage. This study aims to investigate the role and mechanisms of lncRNA HCP5 in ICH.
Methods: We simulated ICH in vivo by injecting collagenase into rats and established an in vitro model using hemoglobin-treated BV2 cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!