Crystal structure of (4-cyano-pyridine-κN){5,10,15,20-tetrakis[4-(benzoyloxy)phenyl]porphyrinato-κ(4) N}zinc-4-cyano-pyridine (1/1).

Acta Crystallogr E Crystallogr Commun

Laboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, University of Monastir, Tunisia.

Published: February 2016

In the title compound, [Zn(C72H44N4O8)(C6H4N2)]·C6H4N2 or [Zn(TPBP)(4-CNpy]·(4-CNpy) [where TPBP and 4-CNpy are 5,10,15,20-(tetra-phenyl-benzoate)porphyrinate and 4-cyano-pyridine, respectively], the Zn(II) cation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a pyridyl-N atom of the 4-CNpy axial ligand in a distorted square-pyramidal geometry. The average Zn-N(pyrrole) bond length is 2.060 (6) Å and the Zn-N(4-CNpy) bond length is 2.159 (2) Å. The zinc cation is displaced by 0.319 (1) Å from the N4C20 mean plane of the porphyrinate anion toward the 4-cyano-pyridine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling and doming deformations. In the crystal, the [Zn(TPBP)(4-CNpy)] complex mol-ecules are linked together via weak C-H⋯N, C-H⋯O and C-H⋯π inter-actions, forming supra-molecular channels parallel to the c axis. The non-coordinating 4-cyano-pyridine mol-ecules are located in the channels and linked with the complex mol-ecules, via weak C-H⋯N inter-actions and π-π stacking or via weak C-H⋯O and C-H⋯π inter-actions. The non-coordinating 4-cyano-pyridine mol-ecule is disordered over two positions with an occupancy ratio of 0.666 (4):0.334 (4).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770980PMC
http://dx.doi.org/10.1107/S2056989016000062DOI Listing

Publication Analysis

Top Keywords

porphyrinate anion
8
axial ligand
8
bond length
8
complex mol-ecules
8
weak c-h⋯n
8
c-h⋯o c-h⋯π
8
c-h⋯π inter-actions
8
non-coordinating 4-cyano-pyridine
8
crystal structure
4
structure 4-cyano-pyridine-κn{5101520-tetrakis[4-benzoyloxyphenyl]porphyrinato-κ4
4

Similar Publications

Photocatalytic detoxification of a sulfur mustard simulant using donor-enhanced porphyrin-based covalent-organic frameworks.

Nanoscale

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

Photocatalytic detoxification of sulfur mustards (, bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.

View Article and Find Full Text PDF

A dual-mode biosensor for microRNA detection based on DNA tetrahedron-gated nanochannels.

Mikrochim Acta

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.

A biosensor based on solid-state nanochannels of anodic aluminum oxide (AAO) membrane for both electrochemical and naked-eye detection of microRNA-31 (MiR-31) is proposed. For this purpose, MoS nanosheets, which possess different adsorption capabilities to single-stranded and double-stranded nucleic acids, are deposited onto the top surface of the AAO membrane. Moreover, multi-functional DNA nanostructure have been designed by linking a G-rich sequence for folding to a G-quadruplex at three vertices and a complementary sequence of MiR-31 at the other one vertex of a DNA tetrahedron.

View Article and Find Full Text PDF

A nitrosyl complex of Mn-porphyrinate, 1 has been synthesized and characterized. It was found to donate a nitroxyl anion (NO) to suitable acceptors in dichloromethane solution in the presence of visible light. The evolution of NO and the characteristic reaction with PPh in the presence of H confirms the NO/HNO donation.

View Article and Find Full Text PDF

Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.

View Article and Find Full Text PDF

The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!