The diagnosis of Alzheimer's disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. Such data are difficult to compare, visualize, and analyze due to the heterogeneous nature of medical tests. We present a hybrid manifold learning framework, which embeds the feature vectors in a subspace preserving the underlying pairwise similarity structure, i.e. similar/dissimilar pairs. Evaluation tests are carried out using the neuroimaging and biological data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) in a three-class (normal, mild cognitive impairment, and AD) classification task using support vector machine (SVM). Furthermore, we make extensive comparison with standard manifold learning algorithms, such as Principal Component Analysis (PCA), Principal Component Analysis (PCA), Multidimensional Scaling (MDS), and isometric feature mapping (Isomap). Experimental results show that our proposed algorithm yields an overall accuracy of 85.33% in the three-class task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765614PMC

Publication Analysis

Top Keywords

manifold learning
12
alzheimer's disease
12
hybrid manifold
8
medical tests
8
principal component
8
component analysis
8
analysis pca
8
learning algorithm
4
algorithm diagnosis
4
diagnosis prognostication
4

Similar Publications

: Alzheimer's disease is a progressive neurological condition marked by a decline in cognitive abilities. Early diagnosis is crucial but challenging due to overlapping symptoms among impairment stages, necessitating non-invasive, reliable diagnostic tools. : We applied information geometry and manifold learning to analyze grayscale MRI scans classified into No Impairment, Very Mild, Mild, and Moderate Impairment.

View Article and Find Full Text PDF

Manifold learning techniques have emerged as crucial tools for uncovering latent patterns in high-dimensional single-cell data. However, most existing dimensionality reduction methods primarily rely on 2D visualization, which can distort true data relationships and fail to extract reliable biological information. Here, we present DTNE (diffusive topology neighbor embedding), a dimensionality reduction framework that faithfully approximates manifold distance to enhance cellular relationships and dynamics.

View Article and Find Full Text PDF

Representational geometry explains puzzling error distributions in behavioral tasks.

Proc Natl Acad Sci U S A

January 2025

Department of Economics, Columbia University, New York, NY 10027.

Measuring and interpreting errors in behavioral tasks is critical for understanding cognition. Conventional wisdom assumes that encoding/decoding errors for continuous variables in behavioral tasks should naturally have Gaussian distributions, so that deviations from normality in the empirical data indicate the presence of more complex sources of noise. This line of reasoning has been central for prior research on working memory.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

Introduction: Diabetic retinopathy (DR) has long been recognized as a common complication of diabetes, making accurate automated grading of its severity essential. Color fundus photographs play a crucial role in the grading of DR. With the advancement of artificial intelligence technologies, numerous researchers have conducted studies on DR grading based on deep features and radiomic features extracted from color fundus photographs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!