The purpose of this study was to explore the reliability of estimating three-dimensional (3D) angular kinematics and kinetics of a swimmer derived from digitized video. Two high-level front crawl swimmers and one high level backstroke swimmer were recorded by four underwater and two above water video cameras. One of the front crawl swimmers was digitized at 50 fields per second with a window for smoothing by a 4(th) order Butterworth digital filter extending 10 fields beyond the start and finish of the stroke cycle (FC1), while the other front crawl (FC2) and backstroke (BS) swimmer were digitized at 25 frames per second with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of one stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) yaw, pitch, roll, and torques were derived together with wrist and ankle moment arms with respect to an inertial reference system with origin at the CM. Coefficients of repeatability ranging from r = 0.93 to r = 0.99 indicated that both digitising sampling rates and extrapolation methods are sufficiently reliable to identify real differences in net torque production. This will enable the sources of rotations about the three axes to be explained in future research. Errors in angular kinematics and displacements of the wrist and ankles relative to range of motion were small for all but the ankles in the X (swimming) direction for FC2 who had a very vigorous kick. To avoid large errors when digitising the ankles of swimmers with vigorous kicks it is recommended that a marker on the shank could be used to calculate the ankle position based on the known displacements between knee, shank, and ankle markers. Key pointsUsing the methods described, an inverse dynamics approach based on 3D position data digitized manually from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding torque production in swimming additional to those of other approaches.The ability to link the torque profiles to swimming actions and technique is enhanced by having additional data such as wrist and ankle displacements that can be obtained readily from the digitized data.An additional marker on the shank should be used to improve accuracy and reliability of calculating the ankle motion for swimmers with a vigorous kick.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763835 | PMC |
Background: Kettlebell (KB) swing exercises, whether performed using shoulder height (SHS) or overhead (OHS) swing variations in therapeutic or strength and conditioning settings, are posterior chain dominant exercises that require hip extension contributions when performed correctly.
Purpose/ Hypothesis: The primary purpose of this study was to evaluate the effect of swing style (SHS, OHS) and KB mass on hip extension kinematics and kinetics in young adult females. A secondary purpose was to determine the effects of swing style and KB mass on the forces applied to the total body center of mass and KB.
Sci Rep
January 2025
Department of Rehabilitation, University Hospital Olomouc, Olomouc, Czech Republic.
Motor imagery (MI) is a mental simulation of a movement without its actual execution. Our study aimed to assess how MI of two modalities of gait (normal gait and much more posturally challenging slackline gait) affects muscle activity and lower body kinematics. Electromyography (biceps femoris, gastrocnemius medialis, rectus femoris and tibialis anterior muscles) as well as acceleration and angular velocity (shank, thigh and pelvis segments) data were collected in three tasks for both MI modalities of gait (rest, gait imagery before and after the real execution of gait) in quiet bipedal stance in 26 healthy young adults.
View Article and Find Full Text PDFPLoS One
December 2024
Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany.
Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Momentum Perturbator (AMP) was utilized in this work, capable of generating perturbation torques on the upper body while minimizing the impact on the center of mass (CoM) excursions.
View Article and Find Full Text PDFClin Biomech (Bristol)
December 2024
Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA. Electronic address:
Background: Varus thrust is common in those with knee osteoarthritis. Varus thrust is traditionally identified with visual analysis or motion capture, methods that are either dichotomous or limited to the laboratory setting. Inertial measurement unit data has been found to correlate with motion capture measures of varus thrust in those with severe knee osteoarthritis, allowing for a quantitative and accessible way of measuring varus thrust.
View Article and Find Full Text PDFSci Rep
December 2024
School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.
Given the higher fall risk and the fatal sequelae of falls on stairs, it is worthwhile to investigate the mechanism of dynamic balance control in individuals with knee osteoarthritis during stair negotiation. Whole-body angular momentum ([Formula: see text]) is widely used as a surrogate to reflect dynamic balance and failure to constrain [Formula: see text] may increase the fall risk. This study aimed to compare the range of [Formula: see text] between people with and without knee osteoarthritis during stair ascent and descent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!