The gut-brain axis is known to modulate behavioral and immune responses in animals; evidence supporting this modulation in chickens, however, is elusive. Here, we analyzed the effects of heat stress and/orClostridium perfringens (CP) infection on behavior, intestinal morphology, brain activity, and corticosterone serum levels in chickens. Broilers were randomly divided into 5 equal groups: a naïve group (N), a thioglycolate group (T), a thioglycolate heat-stressed group (T/HS35), an infected group (I), and an infected/stressed (I/HS35) group. Broilers in the I and I/HS35 groups were experimentally infected withClostridium perfringensfrom the 15th to the 19th day of life. Heat stress (35±1°C) was constantly applied to the broilers in the stressed groups from the 14th to the 19th day of life. Our data showed that heat stress andC. perfringensinfection produced significant differential responses in the chickens' behavior and in c-fosexpression in the paraventricular nucleus of the hypothalamus (PVN), nucleus taenia of the amygdala (Tn), medial preoptic area (POM), andglobus pallidus (GP) of the chickens. Heat stress ameliorated some of the intestinal lesions and the neuroendocrine changes induced byC. perfringensin the birds. Our results suggest the existence of clear relationships between the degree of intestinal lesions, the chickens' behavioral outcomes, brain activity, and serum levels of corticosterone. Together, they reinforce the importance of neuroimmunomodulation and especially of brain-gut axis interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3382/ps/pew021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!