Background: In studies exploring the effects of HCMV infection on immune system aging ('immunosenescence'), after organ transplantation or in other settings, HCMV-specific T-cell responses are often assessed with respect to purportedly 'immunodominant' protein subunits. However, the response structure in terms of recognized antigens and response hierarchies (architecture) is not well understood and actual correlates of immune protection are not known.
Methods: We explored the distribution of T-cell response sizes and dominance hierarchies as well as response breadth in 33 HCMV responders with respect to >200 HCMV proteins.
Results: At the individual responder level HCMV-specific T-cell responses were generally arranged in clear dominance hierarchies; interestingly, the number of proteins recognized by an individual correlated closely with the size of their biggest response. Target-specificity varied considerably between donors and across hierarchy levels with the presence, size, and hierarchy position of responses to purportedly 'immunodominant' targets being unpredictable.
Conclusions: Predicting protective immunity based on isolated HCMV subunit-specific T-cell responses is questionable in light of the complex architecture of the overall response. Our findings have important implications for T-cell monitoring, intervention strategies, as well as the application of animal models to the understanding of human infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mad.2016.03.002 | DOI Listing |
Front Pharmacol
January 2025
Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States.
Introduction: TNFα inhibitor (TNFi) immunogenicity in rheumatoid arthritis (RA) is a major obstacle to its therapeutic effectiveness. Although methotrexate (MTX) can mitigate TNFi immunogenicity, its adverse effects necessitate alternative strategies. Targeting nuclear factor of activated T cells (NFAT) transcription factors may protect against biologic immunogenicity.
View Article and Find Full Text PDFTzu Chi Med J
December 2024
Department of Obstetrics and Gynecology, College of Medicine, University of Babylon, Hilla, Iraq.
The most common STD that triggers cervical cancer is the human papillomavirus. More than 20 types of human papillomavirus (HPV) can induce uterine cervical cancer. Almost all women acquire genital HPV infection soon after their first intercourse, with most of them clearing the virus within 3 years.
View Article and Find Full Text PDFClin Cancer Res
January 2025
University Medical Center Groningen, Groningen, Netherlands.
Purpose: Human papillomavirus (HPV) infection is the major cause of (pre)malignant cervical lesions. We previously demonstrated that Vvax001, a replication-incompetent Semliki Forest virus (SFV) vaccine encoding HPV type 16 (HPV16) E6 and E7, induced potent anti-E6 and -E7 cytotoxic T-cell responses. Here, we investigated the clinical efficacy of Vvax001 in patients with HPV16-positive cervical intraepithelial neoplasia grade 3 (CIN3).
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
Background: Lung cancer, particularly non-small cell lung cancer (NSCLC), has high recurrence rates and remains a leading cause of cancer-related death, despite recent advances in its treatment. Emerging therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown promise but face significant challenges in targeting solid tumors. This study investigated the potential of combining receptor tyrosine kinase-like orphan receptor 1 (ROR1)-targeting CAR-T cells with ferroptosis inducers to promote ferroptosis of tumor cells and enhance anti-tumor efficacy.
View Article and Find Full Text PDFBiomark Res
January 2025
Incyte Corporation, Wilmington, DE, USA.
Potential CD19 antigen loss following CD19-directed therapy has raised concerns over sequential use of these therapies. Tafasitamab, a CD19-targeting immunotherapy, combined with lenalidomide, is approved for relapsed or refractory diffuse large B-cell lymphoma (R/R DLBCL) treatment in adults ineligible for autologous stem cell transplantation. This retrospective analysis examined characteristics and outcomes of adults with R/R DLBCL who received tafasitamab preceding CD19-directed chimeric antigen receptor T-cell (CAR-T) therapy in a real-world setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!