Renal dysplasia, the leading cause of renal failure in children, is characterized by disrupted branching of the collecting ducts and primitive tubules, with an expansion of the stroma, yet a role for the renal stroma in the genesis of renal dysplasia is not known. Here, we demonstrate that expression of β-catenin, a key transcriptional co-activator in renal development, is markedly increased in the expanded stroma in human dysplastic tissue. To understand its contribution to the genesis of renal dysplasia, we generated a mouse model that overexpresses β-catenin specifically in stromal progenitors, termed β-cat(GOF-S) . Histopathological analysis of β-cat(GOF) (-S) mice revealed a marked expansion of fibroblast cells surrounding primitive ducts and tubules, similar to defects observed in human dysplastic kidneys. Characterization of the renal stroma in β-cat(GOF) (-S) mice revealed altered stromal cell differentiation in the expanded renal stroma demonstrating that this is not renal stroma but instead a population of stroma-like cells. These cells overexpress ectopic Wnt4 and Bmp4, factors necessary for endothelial cell migration and blood vessel formation. Characterization of the renal vasculature demonstrated disrupted endothelial cell migration, organization, and vascular morphogenesis in β-cat(GOF) (-S) mice. Analysis of human dysplastic tissue demonstrated a remarkably similar phenotype to that observed in our mouse model, including altered stromal cell differentiation, ectopic Wnt4 expression in the stroma-like cells, and disrupted endothelial cell migration and vessel formation. Our findings demonstrate that the overexpression of β-catenin in stromal cells is sufficient to cause renal dysplasia. Further, the pathogenesis of renal dysplasia is one of disrupted stromal differentiation and vascular morphogenesis. Taken together, this study demonstrates for the first time the contribution of stromal β-catenin overexpression to the genesis of renal dysplasia. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/path.4713 | DOI Listing |
Radiol Case Rep
March 2025
Department of Family Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
Eur J Med Genet
December 2024
Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan. Electronic address:
Cardiol Rev
October 2024
Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA.
Arterial hypertension in young adults, which includes patients between 19 and 40 years of age, has been increasing in recent years and is associated with a significantly higher risk of target organ damage and short-term mortality. It has been reported that up to 10% of these cases are due to a potentially reversible secondary cause, mainly of endocrine (primary aldosteronism, Cushing's syndrome, and pheochromocytoma/paraganglioma), renal (renovascular hypertension due to fibromuscular dysplasia and renal parenchymal disease), or cardiac (coarctation of the aorta) origin. It is recommended to rule out a secondary cause of high blood pressure (BP) in those patients with early onset of grade 2 or 3 hypertension, acute worsening of previously controlled hypertension, resistant hypertension, hypertensive emergency, severe target organ damage disproportionate to the grade of hypertension, or in the face of clinical or biochemical characteristics suggestive of a secondary cause of hypertension.
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Laboratory of Cellular and Molecular Biology (LBCM), Team Biotechnology and System Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Bab-Ezzouar, Algiers, Algeria. Electronic address:
Oral squamous cell carcinoma (OSCC) is a disabling tumor with poor response to chemotherapy. Here, we sought to explore a new chemotherapeutic approach based on a combined induction of cytotoxic ROS and targeting of autophagy and aerobic glycolysis as central contributors to OSCC carcinogenesis and chemoresistance. To this end, tongue OSCC was generated in BALB/c mice using 4NQO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!