Shear-induced amyloid fibrillization: the role of inertia.

Soft Matter

Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.

Published: April 2016

Agitation of protein is known to induce deleterious effects on protein stability and structure, with extreme agitation sometimes resulting in complete aggregation into amyloid fibrils. Many mechanisms have been proposed to explain how protein becomes unstable when subjected to flow, including alignment of protein species, shear-induced unfolding, simple mixing, or fragmentation of existing fibrils to create new seeds. Here a shearing flow was imposed on a solution of monomeric human insulin via a rotating Couette device with a small hydrophobic fluid interface. The results indicate that even very low levels of shear are capable of accelerating amyloid fibril formation. Simulations of the flow suggest that the shear enhances fibrillization kinetics when flow inertia is non-negligible and the resulting meridional circulation allows for advection of bulk protein to the hydrophobic interface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5sm02916cDOI Listing

Publication Analysis

Top Keywords

protein
5
shear-induced amyloid
4
amyloid fibrillization
4
fibrillization role
4
role inertia
4
inertia agitation
4
agitation protein
4
protein induce
4
induce deleterious
4
deleterious effects
4

Similar Publications

Background: There is still a significant proportion of patients with rheumatoid arthritis (RA) in whom multiple therapeutic lines are ineffective. These cases are defined by the EULAR criteria as Difficult-to-Treat RA (D2T-RA) for which there is limited knowledge of predisposing factors.

Objective: To identify the clinical features associated with D2T-RA in real-life practice.

View Article and Find Full Text PDF

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.

Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is prevalent among elderly patients with type 2 diabetes mellitus (T2DM). The association between dietary patterns and CKD in elderly T2DM patients remains understudied. This study aimed to investigate the relationship between dietary patterns and CKD in elderly Chinese patients with T2DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!