Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The specification of pluripotent stem cells into the bone-forming osteoblasts has been explored in a number of studies. However, the current body of literature has yet to adequately address the role of Wnt glycoproteins in the differentiation of pluripotent stem cells along the osteogenic lineage. During mouse embryonic stem cell (ESC) in vitro osteogenesis, the noncanonical WNT5a is expressed early on. Cells either sorted by their positive WNT5a expression or when supplemented with recombinant WNT5a (rWNT5a) during a 2-day window showed significantly enhanced osteogenic yield. Mechanistically, rWNT5a supplementation upregulated protein kinase C (PKC), calcium/calmodulin-dependent kinase II (CamKII) and c-Jun N-terminal kinase (JNK) activity while antagonizing the key effector of canonical Wnt signaling: β-catenin. Conversely, when recombinant WNT3a (rWNT3a) or other positive regulators of β-catenin were employed during this same time window there was a decrease in osteogenic marker expression. However, if rWNT3a was supplemented during a time window following rWNT5a treatment, osteogenic differentiation was enhanced both in murine and human ESCs. Elucidating the role of these WNT ligands in directing the early stages of osteogenesis has the potential to considerably improve tissue engineering protocols and applications for regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2015.0367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!