Nondeletional α-thalassemia (α-thal) is the result of point mutations in critical regions of the α-globin genes, affecting mRNA processing, mRNA translation, or α-globin stability. Hb Constant Spring (Hb CS, HBA2: c.427T > C) is the most common nondeletional α-thal that results from a nucleotide substitution at the termination codon of the α2-globin gene. Hb Quong Sze (Hb QS, HBA2: c.377T > C) is another nondeletional α-thal in South China with the missense mutation at codon 125 of the α2-globin gene making this hemoglobin (Hb) variant highly unstable. Although homozygosity for Hb CS (α(CS)α/α(CS)α) or Hb QS (α(QS)α/α(QS)α) has been reported, clinical pictures vary from severe hemolysis that developed early in life to only mild anemia, no clinical phenotypic data of compound heterozygosity for Hb CS/Hb QS (α(CS)α/α(QS)α) has been described. In this report we describe an adult case with such a compound heterozygosity who presented with a mild α-thal.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03630269.2016.1148614DOI Listing

Publication Analysis

Top Keywords

compound heterozygosity
12
case compound
8
nondeletional α-thalassemia
8
constant spring
8
quong sze
8
nondeletional α-thal
8
α2-globin gene
8
nondeletional
4
heterozygosity nondeletional
4
α-thalassemia mutations
4

Similar Publications

(1) Background: The phenotypes of classic lattice corneal dystrophy (LCD) and granular corneal dystrophy type 2 (GCD2) that result from abnormalities in gene () have previously been described. The phenotype of compound heterozygous classic LCD and GCD2, however, has not yet been reported. (2) Case report: A 39-year-old male (proband) presented to our clinic complaining of decreased vision bilaterally.

View Article and Find Full Text PDF

Background/objectives: The failure of physiological left-right (LR) patterning, a critical embryological process responsible for establishing the asymmetric positioning of internal organs, leads to a spectrum of congenital abnormalities characterized by laterality defects, collectively known as "heterotaxy". biallelic variants have recently been associated with heterotaxy syndrome and congenital heart defects (CHD). However, the genotype-phenotype correlations and the underlying pathogenic mechanisms remain poorly understood.

View Article and Find Full Text PDF

The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).

View Article and Find Full Text PDF

Haemoglobin (Hb) AE Bart's disease is a rare form of thalassemia that results from the co-inheritance of Hb E and alpha thalassemia, typically with Hb H disease. The clinical severity can vary depending on the underlying genetic mutations, particularly in the presence of Hb Constant Spring (Hb CS), which is a highly unstable form of alpha thalassemia. Understanding the genetic basis and haematological profiles of Hb AE Bart's disease is crucial for proper diagnosis and management.

View Article and Find Full Text PDF

Genotype-phenotype correlation and potential genetic risk in the compound heterozygosity for unstable hemoglobins (UHbs) and α-thalassemia were discussed. Capillary electrophoresis and gene sequencing helped to establish the diagnosis. Hematological analysis showed the following findings: MCV 80.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!