A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial patterns and environmental controls of particulate organic carbon in surface waters in the conterminous United States. | LitMetric

Spatial patterns and environmental controls of particulate organic carbon in surface waters in the conterminous United States.

Sci Total Environ

Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Court, #4049, College Park, MD 20740, USA.

Published: June 2016

Carbon cycling in inland waters has been identified as an important, but poorly constrained component of the global carbon cycle. In this study, we compile and analyze particulate organic carbon (POC) concentration data from 1145 U.S. Geological Survey (USGS) gauge stations to investigate the spatial variability and environmental controls of POC concentration. We observe substantial spatial variability in POC concentration (1.43 ± 2.56 mg C/L, mean ± one standard deviation), with the Upper Mississippi River basin and the Piedmont region in the eastern U.S. having the highest POC concentration. Further, we employ generalized linear models (GLMs) to analyze the impacts of sediment transport and algae growth as well as twenty-one other environmental factors on the POC variability. Suspended sediment and chlorophyll-a explain 26% and 17% of the variability in POC concentration, respectively. At the national level, the twenty-one environmental factors combined can explain ca. 40% of the spatial variance in POC concentration. At the national scale, urban area and soil clay content show significant negative correlations with POC concentration, whereas soil water content and soil bulk density correlate positively with POC. In addition, total phosphorus concentration and dam density correlate positively with POC concentration. Furthermore, regional scale analyses reveal substantial variation in environmental controls of POC concentration across eighteen major water resource regions in the U.S. The POC concentration and associated environmental controls also vary non-monotonically from headwaters to large rivers. These findings indicate complex interactions among multiple factors in regulating POC concentration over different spatial scales and across various sections of the river networks. This complexity, together with the large unexplained uncertainty, highlights the need for considering non-linear interplays of multiple environmental factors and developing appropriate methodologies to track the transformation and transport of POC along the terrestrial-aquatic interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.02.164DOI Listing

Publication Analysis

Top Keywords

poc concentration
44
environmental controls
16
poc
14
concentration
12
environmental factors
12
particulate organic
8
organic carbon
8
spatial variability
8
controls poc
8
variability poc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!