Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The structure and rheology behaviour of gels produced by water dispersions of a vitamin C-derived surfactant (ascorbyl-6-O-dodecanoate) were investigated by means of SAXS and rheology experiments for the first time. The gel state is formed upon heating and is due to an anisotropic expansion of the tightly compact lamellar structure. The phase transition involves primarily the melting of the alkyl chains and a significant increment in the interlamellar water layer. In particular, our results show that in the gel the hydrophobic chains are in a liquid-like state, as in the core of a micelle, while the head groups release their acidic proton, become negatively charged and determine the onset of strong electrostatic interactions between facing lamellae. The full hydration of the anionic head groups and the uptake of a significant amount of water increase the interlamellar thickness and stabilise the gel structure. Rheology and SAXS measurements together provide an updated picture for the gel state. Moreover, for the first time we show the presence of a concentration threshold, above which the self-assembled aggregates interact more strongly and deplete some of the water that is retained in the interlamellar region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp07792c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!