Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783772PMC
http://dx.doi.org/10.1038/srep22856DOI Listing

Publication Analysis

Top Keywords

pegylated substrates
4
substrates nsp4
4
nsp4 protease
4
protease tool
4
tool study
4
study protease
4
protease specificity
4
specificity synthesis
4
synthesis novel
4
novel type
4

Similar Publications

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

Cognitive impairment is a core feature of neurodevelopmental (schizophrenia) and aging-associated (mild cognitive impairment and Alzheimer's dementia) neurodegenerative diseases. Limited efficacy of current pharmacological treatments warrants further search for new targets for nootropic interventions. The breakdown of myelin, a phospholipids axonal sheath that protects the conduction of nerve impulse between neurons, was proposed as a neuropathological abnormality that precedes and promotes the deposition of amyloid-β in neuritic plaques.

View Article and Find Full Text PDF

PEGylated ATP-Independent Luciferins for Noninvasive High-Sensitivity High-Speed Bioluminescence Imaging.

ACS Chem Biol

January 2025

Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.

Bioluminescence imaging (BLI) is a powerful, noninvasive imaging method for animal studies. NanoLuc luciferase and its derivatives are attractive bioluminescent reporters recognized for their efficient photon production and ATP independence. However, utilizing them for animal imaging poses notable challenges.

View Article and Find Full Text PDF

Rapid detection and classification of pathogenic microbes for food hygiene, healthcare, environmental contamination, and chemical and biological exposures remain a major challenge due to nonavailability of fast and accurate detection methods. The delay in clinical diagnosis of the most frequent bacterial infections, particularly urinary tract infections (UTIs), which affect about half of the population at least once in their lifetime, can be fatal if not detected and treated appropriately. In this work, we have fabricated aluminum (Al) foil integrated pegylated gold nanoparticles (AuNPs) as a potential surface-enhanced Raman scattering (SERS) substrate, which is used for the detection and classification of uropathogens, namely, , , and directly from the culture without any pretreatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!