Nanotechnology for the Environment and Medicine.

Mini Rev Med Chem

Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende (CS) Italy.

Published: November 2016

Nanotechnology encompasses the production and applications of physical, chemical, and biological systems at scales ranging from individual atoms or molecules to around 100 nanometres, as well as the integration of the resulting nanostructures into larger systems. Nanomaterials differ from bulk materials for their relatively larger surface-area-to-mass ratio, consequently they become more chemically reactive and can show different optical, magnetic and electrical behaviours. In recent years, engineered nanomaterials have gained a particular attention in some fields such as environmental protection (soil, air and water remediation/treatment) and medicine (bio-sensing, imaging, and drug delivery). Nanoparticles can be used to monitor in real-time some pollutants (including heavy metal ions, organic compounds, microbiological pathogens, etc.) present even at extremely low concentrations in different environments. The use of nanomaterials for waste remediation/treatment results in a technology more cost-effective and rapid than current conventional approaches thanks to their enhanced surface area, transport properties, and sequestration characteristics. In addition, the integration of molecular biology and medicine with nanotechnology has resulted in new active nanostructures able to interact with biological systems. Nanocarriers based on carbon nanotubes, fumed silica (SiO2), titanium dioxide (TiO2), and magnetite and maghemite (Fe3O4, and γ-Fe2O3) nanoparticles have a distinct advantage over other drug carriers as they can be opportunely designed to reach the desired targets. As a consequence, such nanostructures can represent an important platform for enhanced medical imaging and controlled drug delivery. Here, some applications of nanomaterials as water purifying agents and drug delivery systems are reported.

Download full-text PDF

Source

Publication Analysis

Top Keywords

drug delivery
12
medicine nanotechnology
8
biological systems
8
nanotechnology environment
4
environment medicine
4
nanotechnology encompasses
4
encompasses production
4
production applications
4
applications physical
4
physical chemical
4

Similar Publications

Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects.

View Article and Find Full Text PDF

Rationale and Logistics of Continuous Infusion Cephalosporin Antibiotics.

Pharmacy (Basel)

December 2024

Department of Pharmacy, Prisma Health Richland, 5 Medical Park Drive, Columbia, SC 29203, USA.

Cephalosporins have traditionally been administered as an intermittent infusion. With the knowledge that cephalosporins demonstrate a time-dependent pharmacodynamic profile, administration via continuous infusion may provide more effective antibiotic exposure for successful therapy. Proposed benefits of administration via continuous infusion include less IV manipulation, decreased potential for antibiotic resistance, and potential cost savings.

View Article and Find Full Text PDF

Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase.

View Article and Find Full Text PDF

Purpose: This review explores the role of pigment epithelium-derived factor (PEDF) in retinal degenerative and vascular disorders and assesses its potential both as an adjunct to established vascular endothelial growth factor inhibiting treatments for retinal vascular diseases and as a neuroprotective therapeutic agent.

Methods: A comprehensive literature review was conducted, focusing on the neuroprotective and anti-angiogenic properties of PEDF. The review evaluated its effects on retinal health, its dysregulation in ocular disorders, and its therapeutic application in preclinical models.

View Article and Find Full Text PDF

Nanoparticles (NPs) have emerged as a potent choice for various applications, from drug delivery to agricultural studies, serving as an alternative and promising methodology for future advancements. They have been widely explored in delivery systems, demonstrating immense promise and high efficiency for the delivery of numerous biomolecules such as proteins and anticancer agents, either solely or modified with other compounds to enhance their capabilities. In addition, the utilization of NPs extends to antimicrobial studies, where they are used to develop novel antibacterial, antifungal, and antiviral formulations with advanced characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!